Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Basic Microbiol ; 63(3-4): 377-388, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36102627

RESUMO

This study shows the morphological identification of anaerobic fungal strains isolated from fecal samples of goats inhabiting Turkey and the effects of various metal ions and chemicals on extracellular xylanase production. Three different anaerobic gut fungi isolated from wild goats in Turkey were identified as Neocallimastix spp. xylanase, cellulase, and lichenase production were tested in culture supernatants, and the maximum-specific activities were found as 560.42 ± 9.39, 159.70 ± 3.88, and 157.36 ± 3.83 (µmol/min/mg protein), respectively. While the optimum temperature range of exo-xylanases was found as 40-50°C, their optimum pH range was determined as 6.0-6.5. Xylanase activity decreased in metal ions and other chemical reactants based on dose. The metal ion that significantly inhibited xylanase activity was Fe+3 . It was found that the ferric ions inhibited xylanase activity in all three anaerobic gut fungi by 30%-90% depending on molarity. On the contrary, the 1 mM concentrations of the Mn+2 , Ba+2 , Co+2 , Cu+2 , Sn+2 , and Mg+2 metal ions and the ethylenediaminetetraacetic acid and ß-mercaptoethanol reagents had a positive effect at rates in the range of 3%-92%. In conclusion, these findings demonstrate that anaerobic gut fungus has very stable fibrolytic enzymes that need to be separated, as well and the existence of a unique resource for industrial applications.


Assuntos
Neocallimastix , Animais , Neocallimastix/metabolismo , Anaerobiose , Fungos/metabolismo , Cabras/metabolismo , Fezes/microbiologia , Concentração de Íons de Hidrogênio , Endo-1,4-beta-Xilanases/metabolismo , Temperatura
2.
An Acad Bras Cienc ; 93(4): e20200896, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34705941

RESUMO

The objective of this study were to identify the fatty acid composition for decanoic (C10:0), tridecanoic (C13:0), myristic (C14:0), pentadecanoic (C15:0), palmitic (C16:0), stearic (C18:0), oleic (C18:1n9c), linoleic (C18:2n6c), arachidic (C20:0), arachidonic (C20:4n6), heneicosanoic (C21:0), erucic (C22:1n9) and Cis-4,7,10,13,16,19-docosahexaenoic (C22:6n3) acids by Neocallimastix, Orpinomyces, Caecomyces and Piromyces species of rumen fungus during in vitro culture. Fatty acid (FA) profi le of anaerobic fungi comprises carbon chains of length ranging from 10 to 22 were analyzed as methyl esters. Analysis of fatty acids was performed using Gas Chromatography-Mass Spectrophotometer (GC-MS). FA measures are presented as proportions of relative amounts (% total fatty acid). The highest amounts of fatty acids for all samples were found as myristic (C14:0) acid. The tridecanoic (C13:0) acid represented the second abundant FA in the fungi in all experimental groups. Stearic acid (C18:0) was the third major fatty acid for isolates investigated in the current study. In addition, another fatty acid was palmitic (C16:0) acid with relative amount representing >20 % of total FA in all samples. Pentadecanoic (C15:0) acid could not be found in any other samples except Orpinomyces sp. (GMLF5). It is concluded that biohydrogenation of fatty acid composition by anaerobic gut fungi are very variable.


Assuntos
Neocallimastigales , Neocallimastix , Piromyces , Anaerobiose , Animais , Ácidos Graxos , Fungos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...