Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990555

RESUMO

In this work, we demonstrate direct evidence of the antiamyloid potential of Cu(II) ions against amyloid formation of insulin. The Cu(II) ions were found to efficiently disassemble the preformed amyloid nanostructures into soluble species and suppress monomer fibrillation under aggregation-prone conditions. The direct interaction of Cu(II) ions with the cross-ß structure of amyloid fibrils causes substantial disruption of both the interchain and intrachain interactions, predominantly the H-bonds and hydrophobic contacts. Further, the Cu(II) ions show a strong affinity for the aggregation-prone conformers of the protein and inhibit their spontaneous self-assembly. These results reveal the possible molecular mechanism for the antiamyloidogenic potential of Cu(II) which could be important for the development of metal-ion specific therapeutic strategies against amyloid linked complications.

2.
Adv Colloid Interface Sci ; 331: 103205, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38875805

RESUMO

Lysozyme, a well-known bacteriolytic enzyme, exhibits a fascinating yet complex behavior when it comes to protein aggregation. Under certain conditions, this enzyme undergoes flexible transformation, transitioning from partially unfolded intermediate units of native conformers into complex cross-ß-rich nano fibrillar amyloid architectures. Formation of such lysozyme amyloids has been implicated in a multitude of pathological and medical severities, like hepatic dysfunction, hepatomegaly, splenic rupture as well as spleen dysfunction, nephropathy, sicca syndrome, renal dysfunction, renal amyloidosis, and systemic amyloidosis. In this comprehensive review, we have attempted to provide in-depth insights into the aggregating behavior of lysozyme across a spectrum of variables, including concentrations, temperatures, pH levels, and mutations. Our objective is to elucidate the underlying mechanisms that govern lysozyme's aggregation process and to unravel the complex interplay between its structural attributes. Moreover, this work has critically examined the latest advancements in the field, focusing specifically on novel strategies and systems, that have been implemented to delay or inhibit the lysozyme amyloidogenesis. Apart from this, we have tried to explore and advance our fundamental understanding of the complex processes involved in lysozyme aggregation. This will help the research community to lay a robust foundation for screening, designing, and formulating targeted anti-amyloid therapeutics offering improved treatment modalities and interventions not only for lysozyme-linked amyloidopathy but for a wide range of amyloid-related disorders.

3.
ACS Appl Mater Interfaces ; 16(15): 18268-18284, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564419

RESUMO

The essential amino acid histidine plays a central role in the manifestation of several metabolic processes, including protein synthesis, enzyme-catalysis, and key biomolecular interactions. However, excess accumulation of histidine causes histidinemia, which shows brain-related medical complications, and the molecular mechanism of such histidine-linked complications is largely unknown. Here, we show that histidine undergoes a self-assembly process, leading to the formation of amyloid-like cytotoxic and catalytically active nanofibers. The kinetics of histidine self-assembly was favored in the presence of Mg(II) and Co(II) ions. Molecular dynamics data showed that preferential noncovalent interactions dominated by H-bonds between histidine molecules facilitate the formation of histidine nanofibers. The histidine nanofibers induced amyloid cross-seeding reactions in several proteins and peptides including pathogenic Aß1-42 and brain extract components. Further, the histidine nanofibers exhibited oxidase activity and enhanced the oxidation of neurotransmitters. Cell-based studies confirmed the cellular internalization of histidine nanofibers in SH-SY5Y cells and subsequent cytotoxic effects through necrosis and apoptosis-mediated cell death. Since several complications including behavioral abnormality, developmental delay, and neurological disabilities are directly linked to abnormal accumulation of histidine, our findings provide a foundational understanding of the mechanism of histidine-related complications. Further, the ability of histidine nanofibers to catalyze amyloid seeding and oxidation reactions is equally important for both biological and materials science research.


Assuntos
Nanofibras , Nanoestruturas , Neuroblastoma , Humanos , Histidina , Peptídeos/química , Nanofibras/química , Amiloide/química , Peptídeos beta-Amiloides/química
4.
ACS Chem Neurosci ; 14(24): 4274-4281, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37962955

RESUMO

Recent discoveries on the self-assembly of aromatic amino acids into amyloid-like neurotoxic nanostructures have initiated a quest to decode the molecular mechanisms for the initiation of neurodegeneration. Moreover, the multicomponent nature of the amyloid deposits still questions the existing and well-defined amyloid cascade hypothesis. Hence, deciphering the neurotoxicity of amyloid-like nanostructures of aromatic amino acids becomes crucial for understanding the etiology of amyloidogenesis. Here, we demonstrate the cellular internalization and consequential damaging effects of self-assembled amyloid-like tryptophan nanostructures on human neuroblastoma cells. The cell-damaging potential of tryptophan nanostructure seems to be facilitated via ROS generation, necrosis and apoptosis mediated cell death. Further, tryptophan nanostructures were found to be seeding competent conformers, which triggered aggressive aggregation of brain extract components. The early stage intermediate nanostructures possess a higher cross-seeding efficacy than the seeding potential of the matured tryptophan fibrils. In addition to the cell-damaging and cross-seeding effects, tryptophan fibrils were found to catalyze oxidation of neuromodulator dopamine. These findings add more insights into the specific role of tryptophan self-assembly during the pathogenesis of hypertryptophanemia and other amyloid-associated neurodegenerative complications.


Assuntos
Amiloide , Triptofano , Humanos , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Encéfalo/metabolismo , Aminoácidos Aromáticos
5.
J Mater Chem B ; 11(36): 8765-8774, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37661927

RESUMO

Covalent tagging of fluorophores is central to the mechanistic understanding of important biological processes including protein-protein interaction and protein aggregation. Hence, studies on fluorophore-tagged peptides help in elucidating the molecular mechanism of amyloidogenesis, its cellular internalization, and crosstalk potential. Despite the many advantages the covalently tagged proteins offer, difficulties such as expensive and tedious synthesis and purification protocols have become a matter of concern. Importantly, covalently tagged fluorophores could introduce structural constraints, which may influence the conformation of the monomeric and aggregated forms of proteins. Here, we describe a robust-yet-simple method to make fluorescent-amyloid nanofibers through a coassembly-reaction route that does not alter the aggregation kinetics and the characteristic ß-sheet-conformers of resultant nanofibers. Fluorescent amyloid nanofibers derived from insulin, lysozyme, Aß1-42, and metabolites were successfully fabricated in our study. Importantly, the incorporated fluorophores exhibited remarkable stability, remaining intact without leaching even after undergoing serial dilutions and prolonged storage periods. This method enables monitoring of cellular internalization of the fluorescent-amyloid-nanofibers and the detection of FRET-signals during interfibrillar interactions. This simple and affordable protocol may significantly help amyloid researchers working on both in vitro and animal models.


Assuntos
Nanofibras , Animais , Proteínas Amiloidogênicas , Corantes Fluorescentes , Insulina , Insulina Regular Humana
6.
Biomater Adv ; 148: 213346, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36963344

RESUMO

Controlling the growth of biofilm on orthodontic material has become a difficult challenge in modern dentistry. The antibacterial efficacy of currently used orthodontic material becomes limited due to the higher affinity of oral microbial flora for plaque formation on the material surface. Thus it is crutial to device an efficient strategy to prevent plaque buildup caused by pathogenic microbiota. In this work, we have fabricated a bioactive orthodontic wire using titanium nanoparticles (TiO2NPs) and silver nanoparticles (AgNPs). AgNPs were synthesized from the extracts of Ocimum sanctum, Ocimum tenuiflorum, Solanum surattense, and Syzygium aromaticum, while the TiO2NPs were synthesized by the Sol-Gel method. The nanoparticles were characterized by various biophysical techniques. The surface of the dental wire was molded by functionalizing these AgNPs followed by an additional coating of TiO2NPs. Functionalized dental wires were found to counteract the formation of tenacious intraoral biofilm, and showed an enhanced anti-bacterial effect against Multi-Drug Resistant (MDR) bacteria isolated from patients with various dental ailments. Data revealed that such surface coating counteracts the bacterial pathogens by inducing the leakage of Ag ions which eventually disrupts the cell membrane as confirmed from TEM micrographs. The results offer a significant opportunity for innovations in developing nanoparticle-based formulations to modify or fabricate an effective orthodontic material.


Assuntos
Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/uso terapêutico , Fios Ortodônticos , Prata/farmacologia , Antibacterianos/farmacologia , Biofilmes , Bactérias
7.
Int J Biol Macromol ; 235: 123629, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36773869

RESUMO

Curcumin is an important food additive that shows multiple medical-benefits including anticarcinogenic, anti-inflammatory, antibiotic and antiamyloid properties. However, understanding the mechanism of curcumin-mediated effects becomes rather complicated since it has low bio-viability and it undergoes autooxidation, influenced by temperature, pH and buffer. We find that curcumin's antiamyloid-potential is not primarily due to curcumin alone, rather due to a synergistic action of curcumin and its autooxidized-products generated during inhibition reactions. In physiological buffer curcumin undergoes thermally induced autooxidation and yields stable compounds which can synergistically work for both inhibition of amyloid aggregation and promotion of amyloid-disaggregation into soluble protein species. Curcumin also showed substantial inhibition effect against coaggregation of different food proteins. Curcumin's strong affinity for the hydrophobic moieties of the aggregation-prone partially-folded insulin structures seems crucial for the inhibition mechanism. Further, autooxidized curcumin products were found to protect UV-induced protein damage. The results provide conceptual foundations highlighting the link between chemistry and antiamyloid-activity of curcumin and may inspire curcumin-based therapeutics against amyloidogenesis.


Assuntos
Curcumina , Curcumina/química , Amiloide/química , Proteínas Amiloidogênicas , Temperatura , Anti-Inflamatórios
8.
Nanoscale ; 14(43): 16270-16285, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36300424

RESUMO

Dietary consumption of Trp via protein-based foods is essential for the maintenance of crucial metabolic processes including the synthesis of proteins and several vital metabolites such as serotonin, melatonin, acetyl CoA, and NADP. However, the abnormal build-up of Trp is known to cause familial hypertryptophanemia and several brain-related medical complications. The molecular mechanism of the onset of such Trp-driven health issues is largely unknown. Here, we show that Trp, under the physiologically mimicked conditions of temperature and buffer, undergoes a concentration driven self-assembly process, yielding amyloid-mimicking nanofibers. Viable H-bonds, π-π interactions and hydrophobic contacts between optimally coordinated Trp molecules become important factors for the formation of a Trp nanoassembly that displays a hydrophobic exterior and a hydrophilic interior. Importantly, Trp nanofibers were found to possess high affinity for native proteins, and they act as cross-seeding competent conformers capable of nucleating amyloid formation in globular proteins including whey protein ß-lactoglobulin and type II diabetes linked insulin hormone. Moreover, these amyloid mimicking Trp nanostructures showed toxic effects on neuroblastoma cells. Since the key symptoms in hypertryptophanemia such as behavioural defects and brain-damaging oxidative stress are also observed in amyloid related disorders, our findings on amyloid-like Trp-nanofibers may help in the mechanistic understanding of Trp-related complications and these findings are equally important for innovation in applied nanomaterials design and strategies.


Assuntos
Antineoplásicos , Diabetes Mellitus Tipo 2 , Nanofibras , Humanos , Triptofano , Nanofibras/química , Amiloide/química , Proteínas Amiloidogênicas
9.
Nanoscale ; 14(24): 8649-8662, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35667124

RESUMO

Molecular self-assembly of biologically relevant aromatic metabolites is known to generate cytotoxic nanostructures and this unique property has opened up new concepts in the molecular mechanisms of metabolite-linked disorders. Because aromaticity is intrinsic to the chemical structure of some important neuromodulators, the question of whether this property can promote their self-assembly into toxic higher order structures is highly relevant to the advancement of both fundamental and applied research. We show here that dopamine, an aromatic neuromodulator of high significance, undergoes self-assembly, under physiological buffer conditions, yielding cytotoxic supramolecular nanostructures. The oxidation of dopamine seems crucial in driving the self-assembly, and substantial inhibition effect was observed in the presence of antioxidants and acidic buffers. Strong H-bonds and π-π interactions between optimally-oriented dopamine molecules were found to stabilize the dopamine nanostructure which displayed characteristic ß-structure-patterns with hydrophobic exterior and hydrophilic interior moieties. Furthermore, dopamine nanostructures were found to be highly toxic to human neuroblastoma cells, revealing apoptosis and necrosis-mediated cytotoxicity. Abnormal fluctuation in the dopamine concentration is known to predispose a multitude of neuronal complications, hence, the new findings of this study on oxidation-driven buildup of amyloid-mimicking neurotoxic dopamine assemblies may have direct relevance to the molecular origin of several dopamine related disorders.


Assuntos
Nanofibras , Amiloide/química , Proteínas Amiloidogênicas , Materiais Biomiméticos , Dopamina , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanofibras/química
10.
Biomacromolecules ; 22(9): 3692-3703, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34375099

RESUMO

The biological consequences associated with the conversion of soluble proteins into insoluble toxic amyloids are not only limited to the onset of neurodegenerative diseases but also to the potential health risks associated with supplements of protein therapeutic agents as well. Hence, finding inhibitors against amyloid formation is important, and natural product-based anti-amyloid compounds have gained much interest because of their higher efficacy and biocompatibility. Plumbagin has been identified as a potential natural product with multiple medical benefits; however, it remains largely unclear whether plumbagin can act against amyloid formation of proteins. Here, we show that plumbagin can effectively inhibit the temperature-induced amyloid aggregation of important proteins (insulin and serum albumin). Both experimental and computational data revealed that the presence of plumbagin in protein solutions, under aggregating conditions, promotes a direct protein-plumbagin interaction, which is predominantly stabilized by stronger H-bonds and hydrophobic interactions. Plumbagin-mediated retention of the native structures of proteins appears to play a crucial role in preventing their conversion into insoluble ß-sheet-rich amyloid aggregates. More importantly, the addition of plumbagin into a suspension of protein fibrils triggered their spontaneous disassembly, promoting the release of soluble proteins. The results highlight that a possible synergistic effect via both the stabilization of protein structures and the restriction of the monomer recruitment at the fibril growth sites could be important for the mechanism of plumbagin's anti-aggregation effect. These findings may inspire the development of plumbagin-based formulations to benefit both the prevention and treatment of amyloid-related health complications.


Assuntos
Amiloidose , Agregados Proteicos , Amiloide , Proteínas Amiloidogênicas , Humanos , Naftoquinonas
11.
Biochem Biophys Res Commun ; 569: 187-192, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34256187

RESUMO

Cofilin-1, an actin dynamizing protein, forms actin-cofilin rods, which is one of the major events that exacerbates the pathophysiology of amyloidogenic diseases. Cysteine oxidation in cofilin-1 under oxidative stress plays a crucial role in the formation of these rods. Others and we have reported that cofilin-1 possesses a self-oligomerization property in vitro and in vivo under physiological conditions. However, it remains elusive if cofilin-1 itself forms amyloid-like structures. We, therefore, hypothesized that cofilin-1 might form amyloid-like assemblies, with a potential to intensify the pathophysiology of amyloid-linked diseases. We used various in silico and in vitro techniques and examined the amyloid-forming propensity of cofilin-1. The study confirms that cofilin-1 possesses an intrinsic tendency of aggregation and forms amyloid-like structures in vitro. Further, we studied the effect of cysteine oxidation on the stability and structural features of cofilin-1. Our data show that oxidation at Cys-80 renders cofilin-1 unstable, leading to a partial loss of protein structure. The results substantiate our hypothesis and establish a strong possibility that cofilin-1 aggregation might play a role in cofilin-mediated pathology and the progression of several amyloid-linked diseases.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Cofilina 1/metabolismo , Cisteína/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Amiloide/química , Amiloide/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/genética , Cofilina 1/química , Cofilina 1/genética , Simulação por Computador , Cisteína/química , Cisteína/genética , Humanos , Modelos Moleculares , Mutação , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Oxirredução , Pontuação de Propensão , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Estabilidade Proteica , Desdobramento de Proteína , Homologia de Sequência de Aminoácidos
12.
ACS Appl Mater Interfaces ; 13(31): 36722-36736, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34327979

RESUMO

Considering the relevance of accumulation and self-assembly of metabolites and aftermath of biological consequences, it is important to know whether they undergo coassembly and what properties the resultant hybrid higher-order structures would exhibit. This work reveals the inherent tendency of aromatic amino acids to undergo a spontaneous coassembly process under physiologically mimicked conditions, which yields neurotoxic hybrid nanofibers. Resultant hybrid nanostructures resembled the ß-structured conformers stabilized by H-bonds and π-π stacking interactions, which were highly toxic to human neuroblastoma cells. The hybrid nanofibers also showed strong cross-seeding potential that triggered in vitro aggregation of diverse globular proteins and brain extract components, converting the native structures into cross-ß-rich amyloid aggregates. The heterogenic nature of the hybrid nanofibers seems crucial for their higher toxicity and faster cross-seeding potential as compared to the homogeneous amino acid nanofibers. Our findings reveal the importance of aromaticity-driven optimized intermolecular arrangements for the coassembly of aromatic amino acids, and the results may provide important clues to the fundamental understanding of metabolite accumulation-related complications.


Assuntos
Aminoácidos Aromáticos/toxicidade , Substâncias Macromoleculares/toxicidade , Nanofibras/toxicidade , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/metabolismo , Proteínas Amiloidogênicas/metabolismo , Linhagem Celular Tumoral , Citocromos c/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Insulina/metabolismo , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Simulação de Dinâmica Molecular , Mioglobina/metabolismo , Nanofibras/química , Multimerização Proteica/efeitos dos fármacos , Albumina Sérica/metabolismo
13.
J Phys Chem Lett ; 12(7): 1803-1813, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33577334

RESUMO

Naturally occurring osmoprotectants are known to prevent aggregation of proteins under various stress factors including extreme pH and elevated temperature conditions. Here, we synthesized gold nanoparticles coated with selected osmolytes (proline, hydroxyproline, and glycine) and examined their effect on temperature-induced amyloid-formation of insulin hormone. These uniform, thermostable, and hemocompatible gold nanoparticles were capable of inhibiting both spontaneous and seed-induced amyloid aggregation of insulin. Both quenching and docking experiments suggest a direct interaction between the osmoprotectant-coated nanoparticles and aggregation-prone hydrophobic stretches of insulin. Circular-dichroism results confirmed the retention of insulin's native structure in the presence of these nanoparticles. Unlike the indirect solvent-mediated effect of free osmolytes, the inhibition effect of osmolyte-coated gold nanoparticles was observed to be mediated through their direct interaction with insulin. The results signify the protection of the exposed aggregation-prone domains of insulin from temperature-induced self-assembly through osmoprotectant-coated nanoparticles, and such effect may inspire the development of osmolyte-based antiamyloid nanoformulations.


Assuntos
Amiloide/química , Ouro/química , Insulina/química , Nanopartículas Metálicas/química , Agregação Patológica de Proteínas/prevenção & controle , Sequência de Aminoácidos , Interações Hidrofóbicas e Hidrofílicas , Hidroxiprolina/química , Simulação de Acoplamento Molecular , Prolina/química , Conformação Proteica , Propriedades de Superfície , Temperatura , Termodinâmica
14.
J Biomol Struct Dyn ; 39(5): 1865-1878, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32189579

RESUMO

In Vitro analysis of the interaction of organophosphate pesticides (OP) with bovine serum albumin (BSA) is crucial to understand their potential effects at the molecular level. In this context, we have employed Saturation Transfer Difference (STD) NMR experiments in conjunction with molecular docking studies to unravel the binding interaction of the OP chlorpyrifos (CPF), diazinon (DZN) and parathion (PA) in solution. The relative STD (%) suggested the detailed epitope mapping of these OP with BSA while the concentration-dependent STD NMR studies were performed to obtain the complex dissociation constant (KD) of the OP-BSA complexes; KD=1.81 × 10-4 M, 1.30 × 10-3 M and 1.11 × 10-3 M for CPF, DZN and PA were extracted respectively. Similar binding modes were identified for all the three OP using STD site-marker experiment. ITC experiments were performed as a complementary method that revealed a high binding affinity of OP-BSA complexes through non-covalent interaction. Molecular docking confirmed the possible interacting chemical groups of OP-BSA complexes. These significant results furnish valuable information about the toxicity risk of OP to proteins.Communicated by Ramaswamy H. Sarma.


Assuntos
Clorpirifos , Inseticidas , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Ligação Proteica , Albumina Sérica , Soroalbumina Bovina/metabolismo
15.
ACS Chem Neurosci ; 11(22): 3772-3785, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33125229

RESUMO

Parkinson's disease (PD) is the most common progressive neurodegenerative disease known to impart bradykinesia leading to diverse metabolic complications. Currently, scarcity of effective drug candidates against this long-term devastating disorder poses a big therapeutic challenge. Here, we have synthesized biocompatible, polycrystalline, and uniform piperine-coated gold nanoparticles (AuNPspiperine) to specifically target paraquat-induced metabolic complications both in Drosophila melanogaster and SH-SY5Y cells. Our experimental evidence clearly revealed that AuNPspiperine can effectively reverse paraquat-induced lethal effects in both in vitro and in vivo model systems of PD. AuNPspiperine were found to suppress oxidative stress and mitochondrial dysfunction, leading to inhibition of apoptotic cell death in paraquat-treated flies. AuNPspiperine were also found to protect SH-SY5Y cells against paraquat-induced toxicity at the cellular level preferably by maintaining mitochondrial membrane potential. Both experimental and computational data point to the possible influence of AuNPspiperine in regulating the homeostasis of parkin and p53 which may turn out to be the key factors in reducing PD symptoms. The findings of this work may facilitate the development of piperine-based nanoformulations against PD.


Assuntos
Nanopartículas Metálicas , Doenças Neurodegenerativas , Alcaloides , Animais , Benzodioxóis , Drosophila melanogaster , Ouro , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Paraquat/toxicidade , Piperidinas , Alcamidas Poli-Insaturadas
16.
Pestic Biochem Physiol ; 163: 39-50, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31973869

RESUMO

Since the exposure of organophosphate pesticides are known to cause severe health consequences, it is important to understand the molecular interaction of these pesticides metabolites with vital biomolecules, especially with the proteins. Here, considering bovine serum albumin (BSA) as a model protein, we have examined its interaction with two selected organophosphate metabolites, 3,5,6-trichloro-2-pyridinol (TCPy) and paraoxon methyl (PM). TCPy and PM are resultant metabolites of two most widely used organophosphate pesticides chlorpyrifos and parathion respectively. 1H NMR line broadening, selective spin-lattice relaxation rate measurements, saturation transfer difference (STD) NMR of both TCPy and PM were carried out in the presence and absence of BSA. The obtained values of the affinity index (A), binding constants (Ka) and thermodynamic parameters indicated strong organophosphates-BSA interaction. Further, fluorescence quenching data on TCPy-BSA and PM-BSA interactions strongly supported the NMR results, besides providing the stoichiometry of these complexes. Molecular docking analysis unraveled viable, strong hydrogen bonds and electrostatic interactions in TCPy-BSA and PM-BSA complexes. This study also revealed substantial time-dependent changes in the 1H NMR intensity of PM in the presence of BSA, which suggests faster degradation of PM with increasing protein concentration during protein-metabolite interactions. The hydrolysis is attributed to the esterase-like action of BSA. The result provides key insights into the direct interaction of the organophosphate metabolites with a biologically important carrier protein, serum albumin.


Assuntos
Soroalbumina Bovina , Sítios de Ligação , Simulação de Acoplamento Molecular , Ligação Proteica , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Fluorescência
17.
Colloids Surf B Biointerfaces ; 186: 110640, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31835184

RESUMO

Myricetin has been identified as a naturally occurring flavonoid class of polyphenolic compound which shows multiple medical benefits including antidiabetic, anticancerous and antioxidant properties. Here, we report the protective effect of myricetin against in vitro amyloid fibril formation of selected globular proteins. The results reveal that myricetin is capable of inhibiting amyloid fibril formation of both insulin and serum albumin. Seed-induced aggregation of both proteins was also substantially suppressed in the presence of myricetin. Fluorescence quenching data indicated binding of myricetin with protein monomers as well as fibrils. The molecular docking studies revealed strong affinity of myricetin for both the native and partially unfolded conformation of proteins mediated by H-bonds and hydrophobic interactions. Myricetin was also observed to promote disassembly of mature amyloid fibrils. The results reveal that myricetin molecule has the potential for suppressing amyloid formation and such an inherent property may help in developing myricetin-based antiamyloid drugs.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Flavonoides/farmacologia , Insulina/química , Soroalbumina Bovina/química , Peptídeos beta-Amiloides/biossíntese , Animais , Bovinos , Humanos , Insulina/metabolismo , Modelos Moleculares , Agregados Proteicos/efeitos dos fármacos , Estabilidade Proteica , Soroalbumina Bovina/metabolismo
18.
Ageing Res Rev ; 56: 100937, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31430565

RESUMO

Hallmarks of most of the amyloid pathologies are surprisingly found to be heterocomponent entities such as inclusions and plaques which contain diverse essential proteins and metabolites. Experimental studies have already revealed the occurrence of coaggregation and cross-seeding during amyloid formation of several proteins and peptides, yielding multicomponent assemblies of amyloid nature. Further, research reports on the co-occurrence of more than one type of amyloid-linked pathologies in the same individual suggest the possible cross-talk among the disease related amyloidogenic protein species during their amyloid growth. In this review paper, we have tried to gain more insight into the process of coaggregation and cross-seeding during amyloid aggregation of proteins, particularly focusing on their relevance to the pathogenesis of the protein misfolding diseases. Revelation of amyloid cross-seeding and coaggregation seems to open new dimensions in our mechanistic understanding of amyloidogenesis and such knowledge may possibly inspire better designing of anti-amyloid therapeutics.


Assuntos
Amiloide/metabolismo , Amiloidose , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/metabolismo , Animais , Humanos , Doenças Neurodegenerativas/fisiopatologia , Placa Amiloide/metabolismo
19.
ACS Nano ; 13(5): 6033-6049, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31021591

RESUMO

Recent reports have revealed the intrinsic propensity of single aromatic metabolites to undergo self-assembly and form nanostructures of amyloid nature. Hence, identifying whether aspartame, a universally consumed artificial sweetener, is inherently aggregation prone becomes an important area of investigation. Although the reports on aspartame-linked side effects describe a multitude of metabolic disorders, the mechanistic understanding of such destructive effects is largely mysterious. Since aromaticity, an aggregation-promoting factor, is intrinsic to aspartame's chemistry, it is important to know whether aspartame can undergo self-association and if such a property can predispose any cytotoxicity to biological systems. Our study finds that aspartame molecules, under mimicked physiological conditions, undergo a spontaneous self-assembly process yielding regular ß-sheet-like cytotoxic nanofibrils of amyloid nature. The resultant aspartame fibrils were found to trigger amyloid cross-seeding and become a toxic aggregation trap for globular proteins, Aß peptides, and aromatic metabolites that convert native structures to ß-sheet-like fibrils. Aspartame fibrils were also found to induce hemolysis, causing DNA damage resulting in both apoptosis and necrosis-mediated cell death. Specific spatial arrangement between aspartame molecules is predicted to form a regular amyloid-like architecture with a sticky exterior that is capable of promoting viable H-bonds, electrostatic interactions, and hydrophobic contacts with biomolecules, leading to the onset of protein aggregation and cell death. Results reveal that the aspartame molecule is inherently amyloidogenic, and the self-assembly of aspartame becomes a toxic trap for proteins and cells, exposing the bitter side of such a ubiquitously used artificial sweetener.


Assuntos
Peptídeos beta-Amiloides/química , Aspartame/química , Nanoestruturas/efeitos adversos , Edulcorantes/química , Amiloide/efeitos adversos , Amiloide/química , Aspartame/efeitos adversos , Proliferação de Células/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Doenças Metabólicas/induzido quimicamente , Doenças Metabólicas/genética , Doenças Metabólicas/patologia , Nanofibras/química , Nanoestruturas/química , Conformação Proteica em Folha beta/efeitos dos fármacos , Edulcorantes/efeitos adversos
20.
Biochemistry ; 57(35): 5202-5209, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30080038

RESUMO

Here, we show that aromatic amino acid tyrosine, under a physiologically mimicking condition, readily forms amyloid-like entities that can effectively drive aggregation of different globular proteins and aromatic residues. Tyrosine self-assembly resulted in the formation of cross-ß rich regular fibrils as well as spheroidal oligomers. Computational data suggest intermolecular interaction between specifically oriented tyrosine molecules mediated through π-π stacking and H-bonding interactions, mimicking a cross-ß-like architecture. Both individual protein samples and mixed protein samples underwent aggregation in the presence of tyrosine fibrils, confirming the occurrence of amyloid cross-seeding. The surface of the tyrosine's amyloid like entities was predicted to trap native protein structures, preferably through hydrophobic and electrostatic interactions initiating an aggregation event. Because tyrosine is a precursor to vital neuromodulators, the inherent cross-seeding potential of the tyrosine fibrils may have direct relevance to amyloid-linked pathologies.


Assuntos
Amiloide/química , Proteínas Amiloidogênicas/química , Nanoestruturas/química , Agregação Patológica de Proteínas , Tirosina/química , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...