Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(22): 6238-6248, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37941958

RESUMO

Recently, CsPbX3 (X = I, Br, Cl) perovskite nanocrystals (NCs) have drawn wide attention owing to their outstanding photophysical and optoelectronic properties. However, the toxicity of such NCs remained a big challenge for further commercialization. Herein, we adopt facile methods for synthesizing green-emissive Cs3Cu2Cl5 and blue-emissive Cs3Cu2Br2.5I2.5 perovskite NCs that exhibit broad emission spectra with large Stokes shifts. These NCs showed photoluminescence quantum yields (PLQY) up to 65% (Cs3Cu2Cl5 NCs) and 32% (Cs3Cu2Br2.5I2.5 NCs) with limited stabilities. To further improve the stability, the NCs were blended with a hydrophobic polymer poly-methylmethacrylate (PMMA) and embedded inside the polymer fiber by an electrospinning process to form composite fibers. The as-prepared Cs3Cu2Cl5@PMMA and Cs3Cu2Br2.5I2.5@PMMA fiber films demonstrated good surface coverage and better thermal stability, and even retained their emission properties when dispersed in water. The emissive fibers were also deposited on flexible polyethylene terephthalate (PET) substrates that displayed high resistance towards bending and twisting with no signs of breakage, damage, or loss of optical properties. Finally, UV-pumped phosphor-converted WLEDs fabricated by using these blue and green-emitting fibers revealed CIE chromaticity coordinates at (0.27, 0.33) with a maximum luminous efficiency of 69 Lm W-1 and correlated color temperature (CCT) value of 8703 K. These outcomes can be beneficial for the development of futuristic flexible display technologies.

2.
RSC Adv ; 13(9): 5946-5956, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816075

RESUMO

Recently, CsPbX3 (X= Cl, Br, I) nanocrystals (NCs) have evolved as a potential contender for various optoelectronic applications due to some of their excellent photophysical properties. Their superior non-linear optical properties enable them to take part in bioimaging applications due to their longer penetration depth and less scattering effect in living cells. However, the poor stability of perovskite NCs in aqueous media still remains a great challenge for practical usage. Comparatively stable silica-coated NCs have a tendency to agglomerate among other NCs and transform into bigger particles. Such big particles clog the inside of narrow channels during the uptake and can't effectively reach the targeted cells. To tackle such issues, we introduce a fast and reproducible synthesis process of CsPbBr3 NCs that are coated with different long-chained organic ligands/polymers and compared their photophysical properties. Among them, polyvinylpyrrolidone (PVP) encapsulated NCs are highly luminescent in the green spectral region and showed a maximum photoluminescence quantum yield (PLQY) of up to 84%. The incorporation of n-isopropyl acrylamide (NIPAM) along with PVP further improves the stability of the PVP-coated NCs against heat and moisture. These NCs exhibit higher water stability compared to silica-coated NCs and maintained their emission properties for about one week in DI water. The smaller particle size, uniform size distribution, higher structural stability, and better dispersivity of polymer-coated NCs in the aqueous media enable them to perform as fluorescent probes for live cell imaging in mammalian Chinese Hamster Ovary (CHO-K1) cells. There is no adverse affect in the cells' viability and morphology even after long incubation periods (∼72 hours). The dosage of Pb-ions contained in the polymer-coated NCs is calculated as below 5 µg mL-1, which is suitable for live cell imaging. This work provides insight for expanding the use of these NCs significantly into bioimaging applications with higher sensitivity.

3.
Chempluschem ; 86(4): 558-573, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33830661

RESUMO

In less than a decade, organic-inorganic metal halide perovskites (MHPs) have shown tremendous progress in the field of light-emitting applications. Perovskite light-emitting diodes (PeLEDs) have reached external quantum efficiencies (EQE) exceeding 20 % and they have been recognized as a potential contender of the commercial display technologies. However, perovskite thin films in PeLEDs are generally deposited via a spin-coating process, which is not favourable for large area device fabrication. Despite the great success of solution-processed PeLEDs, very few articles have been reported on vacuum processed PeLEDs and the improvements in their optoelctronic performances are also progressing slowly. On the other hand, vacuum processing techniques are mostly used in organic LED technology as they can guarantee (i) the absence of solvent during thin-film growth, (ii) process scalability over large area substrates, and (iii) precise thin-film thickness control. This thin-film growth process is suitable for application in the advancement of a large variety of display technologies. In this Review, we present an overview of current research advances in the field of perovskite thin films grown via vacuum techniques, a study of their photophysical properties, and integration in PeLEDs for the generation of different colors. We also highlight the current challenges and future prospects for the further development of vacuum processed PeLEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...