Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(26): 34326-34337, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885609

RESUMO

We demonstrate a simple droplet diagnostic approach to monitor the UiO-66 MOF (metal-organic framework) synthesis and its quality using the sessile droplet drying phenomenon. Drying a sessile droplet involves evaporation-driven hydrodynamic flow and particle-nature-dependent self-assembled deposition. In general, the MOF synthesis process involves different sizes and physicochemical nature of particles in every synthesis stage. Equivalent quantities of each of purified pore-activated UiO-66 MOF, yet-to-be-purified pore-inactivated UiO-66 MOF, and reaction precursors of UiO-66 MOF give different deposition patterns when a well-dispersed aqueous droplet of these materials undergoes drying over substrates of varying stiffness and wettability. Yet-to-be-purified, pore-inactivated UiO-66 MOF nanoparticles undergo transport toward the droplet periphery, leading to a thick ring-like deposition at the dried droplet edge. Under appropriate drying conditions, such a deposit leads to desiccation-type mud-like reticular cracking. We study the origin of such ring-like deposits and cracks to understand how the surface charge density of UiO-66 particles controls their stability. We demonstrate that ZrOCl2 salt trapped in a nonpurified pore-inactivated UiO-66 MOF moiety is the principal reason for ring-like deposit formation and subsequent cracking in its dried aqueous droplet edge. Qualitatively, we identified Lewis acid salts that are capable of acting as BroÌ·nsted acid upon hydrolysis (like FeCl3, SnCl2, and ZrOCl2), influence surface charge density and colloidal stability of dispersed UiO-66 MOF particles. As a result, immediate particle coagulation is avoided, so those travel to the droplet edge, forming ring-like deposition and subsequent cracking upon drying. Further, we show that crack patterns on such deposits are highly dependent on the stiffness and temperature of depositing substrates via a competition between axial and lateral strains at the deposit-substrate interface.

2.
Dalton Trans ; 52(34): 11886-11896, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37561075

RESUMO

Designing metal-organic framework (MOF)-based solid nanoparticles to stabilize Pickering emulsions by fine-tuning their hydrophobicity and lipophobicity is vital for essential applications and fundamental understanding. We demonstrate in situ grafting of palmitic acid in UiO-66 MOF through its linker defects. Our designed and activated nanoparticles (denoted as UP') stabilized the Pickering emulsions of n-heptane-in-water. Furthermore, we showed how UP' stabilized emulsion droplets disperse in media by covering each tiny droplet with a nanoscale layer made of UP'. To support our claim, we carried out the freeze-drying process to remove the liquid part from the emulsion, leaving behind the solid shell-like microstructures that we further characterized through several microscopic techniques. The stable n-heptane-in-water emulsion was confirmed by dilution (drop test), conductivity, zeta potential, and theoretical surface electrostatic potential measurements. Rheological studies indicate that the Pickering emulsions of n-heptane-in-water stabilized by UP' are much more resistant to deformation and flow imparting higher (mechanical) stability and shelf-life. Pickering emulsions stabilized by UP' emerged as a versatile way to design smart functional materials of UiO-66 through engineering linker defects that may have potential applications in interfacial catalysis, dye or contaminant separation, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA