Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979753

RESUMO

Cancer is a major public health problem worldwide, and it is the second leading cause of death of humans in the world. The present study has been directed toward the preparation of methotrexate-loaded surface-modified solid lipid nanoparticles (SLNs) for potential use as a chemotherapeutic formulation for cancer therapy. A lipid (C14-AAP) derived from myristic acid (C14H30O2) and acetaminophen (AAP) was employed as a targeting ligand for human breast and lung cancer cells that overexpress the cyclooxygenases-2 (COX-2) enzyme. The SLNs consisting of stearic acid and C14-AAP were characterized by several methods, including dynamic light scattering (DLS), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), ultraviolet-visible (UV-vis) spectroscopy, high-resolution transmission electron microscopy (HRTEM), and field emission scanning electron microscopy (FESEM) techniques. An in vitro cell cytotoxicity study was done by carrying out an MTT assay and flow cytometry study in the human breast cancer (MCF7) and human lung cancer cell line (A549). The expression level of COX-2 enzyme in MCF7 and A549 cell lines was examined by reverse transcription polymerase chain reaction (RT-PCR). A high level of COX-2 expression was observed in both cell lines. In vitro cell cytotoxicity study in MC7 and A549 cell lines showed the surface-modified, methotrexate-loaded SLN is more effective in cell killing and induction of apoptotic death in both the cell lines than free methotrexate in MTT, flow cytometry, clonogenic assay, and Western blot studies. The surface-modified SLN was radiolabeled with 99mTc with %RCP greater than 95%. In vivo biodistribution study of the 99mTc-labeled SLN in melanoma tumor-bearing C57BL6 mice showed moderate tumor uptake of the radiotracer at 3 h post injection. The SPECT/CT image aligns with the biodistribution results. This study shows that AAP-modified SLNs could be a potential chemotherapeutic formulation for cancer therapy.

2.
ACS Appl Bio Mater ; 7(5): 3403-3413, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38700026

RESUMO

The delivery of drugs to the brain in the therapy of diseases of the central nervous system (CNS) remains a continuing challenge because of the lack of delivery systems that can cross the blood-brain barrier (BBB). Therefore, there is a need to develop an innovative delivery method for the treatment of CNS diseases. Thus, we have investigated the interaction of γ-aminobutyric acid (GABA) and S-(-)-γ-amino-α-hydroxybutyric acid (GAHBA) with the GABA receptor by performing a docking study. Both GABA and GAHBA show comparable binding affinities toward the receptor. In this study, we developed surface-modified solid lipid nanoparticles (SLNs) using GAHBA-derived lipids that can cross the BBB. CLB-loaded SLNs were characterized by a number of methods including differential scanning calorimetry, dynamic light scattering, UV-vis spectroscopy, and transmission electron microscopy. The blank and CLB-loaded SLN suspensions were found to exhibit good storage stability. Also, the SLNs showed a higher encapsulation efficiency for CLB drugs. In vitro release kinetics of CLB at physiological temperature was also investigated. The results of the in vitro cell cytotoxicity assay and flow cytometry studies in the human glioma U87MG cell line and human prostate cancer PC3 cell line suggested a higher efficacy of the GAHBA-modified CLB-loaded SLNs in U87MG cells. The transcription level of GABA receptor expression in the target organ and cell line was analyzed by a reverse transcription polymerase chain reaction study. The in vivo biodistribution and brain uptake in C57BL6 mice and SPECT/CT imaging in Wistar rats investigated using 99mTc-labeled SLN and autoradiography suggest that the SLNs have an increasing brain uptake. We have demonstrated the delivery of the anticancer drug chlorambucil (CLB) to glioma.


Assuntos
Encéfalo , Clorambucila , Lipídeos , Nanopartículas , Tamanho da Partícula , Clorambucila/química , Clorambucila/farmacologia , Clorambucila/administração & dosagem , Nanopartículas/química , Animais , Encéfalo/metabolismo , Lipídeos/química , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Propriedades de Superfície , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sistemas de Liberação de Medicamentos , Ratos , Portadores de Fármacos/química , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...