Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 81(1): 43, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117393

RESUMO

This study investigates the role of bacterial endophytes from extreme alkaline environments in alleviating alkaline stress and plant development. Stressful environmental factors, such as soil acidity and alkalinity/sodicity, frequently affect plant development. In the present study, alkaline-tolerant endophytic strains were isolated from three plant species Saccharum munja, Calotropis procera, and Chenopodium album, and 15 out of the total of 48 isolates were selected for further examination of their abiotic stress tolerance. Molecular analysis based on 16S rRNA gene sequencing revealed strains from Enterobacter, Acinetobacter, Stenotrophomonas, Bacillus, Lysinibacillus, and Mammaliicoccus genera. Out of 15 isolates based on their quantitative PGP traits and abiotic stress tolerance, 6 were finally selected for greenhouse experiments. Under alkaline conditions, results demonstrated that the strains from the genera Enterobacter, Bacillus, Stenotrophomonas, and Lysinibacillus had beneficial effects on maize growth. These findings suggest that using a combination of bacteria with multiple plant growth-promoting attributes could be a sustainable approach to enhance agricultural yield, even in a challenging alkaline environment. The study concludes that the application of bacterial endophytes from plants growing in extremely alkaline environments might provide other plants with similar stress-tolerance abilities. The outcome of the study provides a basis for future exploration of the mechanisms underlying endophyte-induced stress tolerance.


Assuntos
Bacillaceae , Bacillus , Zea mays , RNA Ribossômico 16S/genética , Enterobacter/genética , Endófitos/genética , Desenvolvimento Vegetal
2.
Curr Microbiol ; 80(10): 328, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37620623

RESUMO

Intensifying sodic land characterized by high alkaline pH is an incipient environmental hazard-limiting agricultural potential. In this study, we investigated the effects of plant growth-promoting bacteria Ochrobactrum sp. strain NBRISH6 on the growth and physiology of maize (Zea mays L.) grown under alkaline stress at two soil pH levels. Additionally, we also studied the effects of NBRISH6 on soil fertility parameters. A greenhouse experiment was designed using two live soils (pH 8.2 and 10.2) in earthen pots using maize as a host. Results revealed a significant increase in plant growth and a decrease in defense enzymes in both soil types due to NBRISH6 inoculation as compared to non-treated control. Furthermore, activities of all soil enzymes along with bacterial diversity increased in NBRISH6 treatment under normal as well as stressed conditions. In addition, field evaluation of NBRISH6 inoculation using maize was carried out under normal and alkaline conditions, which resulted in significant enhancement of all vegetative parameters as compared to respective controls. Therefore, the study suggested that Ochrobactrum sp. NBRISH6 can be used to develop a bioinoculant formulation to ameliorate abiotic stresses and enhanced crop productivity.


Assuntos
Ochrobactrum , Solo , Zea mays , Agricultura , Imunidade Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...