Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36365482

RESUMO

Class II malocclusion is one of the most common dental anomalies and the use of intermaxillary elastomers is the standard method in its treatment. However, orthodontic elastics cannot exert continuous force over a period of time due to force degradation. Our goal was to mechanically characterize the different types of elastomers during static and cyclic loads, based on uniform methodology and examine the morphological changes after loading. Ten types of latex-containing and four latex-free intermaxillary elastics were examined from six different manufacturers. To determine the mechanical characteristics of the elastomers, tensile tests, cyclical tensile fatigue tests and 24 h relaxation tests were performed, and the elastics were also subjected to scanning electron microscopy (SEM) and Raman spectroscopy. Regardless of the manufacturer, the latex-containing elastomers did not show significant differences in the percentage of elongation at break during the tensile test. Only one type of latex-containing elastomer did not tear during the 24 h cyclical fatigue test. Fatigue was confirmed by electron microscopy images, and the pulling force reduced significantly. During the force relaxation test, only one latex-free ligature was torn; the force degradation was between 7.8% and 20.3% for latex ligatures and between 29.6% and 40.1% for latex-free elastomers. The results showed that dynamic loading was more damaging to ligatures than static loading, latex-containing elastomers were more resistant than latex-free elastics, and which observation could have clinical consequences or a potential effect on patient outcome.

2.
J Biol Chem ; 297(1): 100716, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33930467

RESUMO

The lesser-known unconventional myosin 16 protein is essential in proper neuronal functioning and has been implicated in cell cycle regulation. Its longer Myo16b isoform contains a C-terminal tail extension (Myo16Tail), which has been shown to play a role in the neuronal phosphoinositide 3-kinase signaling pathway. Myo16Tail mediates the actin cytoskeleton remodeling, downregulates the actin dynamics at the postsynaptic site of dendritic spines, and is involved in the organization of the presynaptic axon terminals. However, the functional and structural features of this C-terminal tail extension are not well known. Here, we report the purification and biophysical characterization of the Myo16Tail by bioinformatics, fluorescence spectroscopy, and CD. Our results revealed that the Myo16Tail is functionally active and interacts with the N-terminal ankyrin domain of myosin 16, suggesting an intramolecular binding between the C and N termini of Myo16 as an autoregulatory mechanism involving backfolding of the motor domain. In addition, the Myo16Tail possesses high structural flexibility and a solvent-exposed hydrophobic core, indicating the largely unstructured, intrinsically disordered nature of this protein region. Some secondary structure elements were also observed, indicating that the Myo16Tail likely adopts a molten globule-like structure. These structural features imply that the Myo16Tail may function as a flexible display site particularly relevant in post-translational modifications, regulatory functions such as backfolding, and phosphoinositide 3-kinase signaling.


Assuntos
Anquirinas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Miosinas/química , Miosinas/metabolismo , Sequência de Aminoácidos , Animais , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína , Ratos , Espectrometria de Fluorescência , Triptofano/metabolismo
3.
Sci Rep ; 10(1): 2061, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029866

RESUMO

Blue Light Using Flavin (BLUF) domains are increasingly being adopted for use in optogenetic constructs. Despite this, much remains to be resolved on the mechanism of their activation. The advent of unnatural amino acid mutagenesis opens up a new toolbox for the study of protein structural dynamics. The tryptophan analogue, 7-aza-Trp (7AW) was incorporated in the BLUF domain of the Activation of Photopigment and pucA (AppA) photoreceptor in order to investigate the functional dynamics of the crucial W104 residue during photoactivation of the protein. The 7-aza modification to Trp makes selective excitation possible using 310 nm excitation and 380 nm emission, separating the signals of interest from other Trp and Tyr residues. We used Förster energy transfer (FRET) between 7AW and the flavin to estimate the distance between Trp and flavin in both the light- and dark-adapted states in solution. Nanosecond fluorescence anisotropy decay and picosecond fluorescence lifetime measurements for the flavin revealed a rather dynamic picture for the tryptophan residue. In the dark-adapted state, the major population of W104 is pointing away from the flavin and can move freely, in contrast to previous results reported in the literature. Upon blue-light excitation, the dominant tryptophan population is reorganized, moves closer to the flavin occupying a rigidly bound state participating in the hydrogen-bond network around the flavin molecule.


Assuntos
Proteínas de Bactérias/metabolismo , Flavinas/metabolismo , Flavoproteínas/metabolismo , Luz , Fotorreceptores Microbianos/metabolismo , Triptofano/análogos & derivados , Proteínas de Bactérias/química , Proteínas de Bactérias/efeitos da radiação , Flavinas/química , Flavinas/efeitos da radiação , Flavoproteínas/química , Flavoproteínas/efeitos da radiação , Transferência Ressonante de Energia de Fluorescência , Ligação de Hidrogênio/efeitos da radiação , Conformação Molecular , Simulação de Dinâmica Molecular , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/efeitos da radiação , Triptofano/química , Triptofano/metabolismo , Triptofano/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...