Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 343: 96-101, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34861292

RESUMO

Herein, we report the synthesis of taurine incorporated (sulfur containing organic molecule derived from methionine and cysteine) hybrid nanoflowers (thNFs) with an intrinsic peroxidase-mimic and antimicrobial activities in the presence of H2O2. Formation of thNFs using non-enzyme molecules was for the first time and systematically studied as a function of the taurine concentration, types of metal ions (Cu2+, Fe2+ and Fe3+) and pH values of reaction solution. The peroxidase like activities of thNFs rely on Fenton-like reaction against guaiacol used as a model substrate. The efficiency of Fenton reaction can be attributed to porous structure and presence of ions of transition elements in the thNFs. The thNFs were further characterized using FTIR, XRD, SEM and EDX. The thNFs also showed remarkable antimicrobial properties against S. aureus, E. coli, B. cereus and C. albicans. We claim that nonprotein-based NFs can be considered as new generation nano-biocatalysts as an alternative to enzymes and can be used in various medicinal, biochemical, immunological, biotechnological, and industrial applications.


Assuntos
Anti-Infecciosos , Nanoestruturas , Anti-Infecciosos/farmacologia , Cobre , Escherichia coli , Peróxido de Hidrogênio , Peroxidase , Staphylococcus aureus , Taurina
2.
Enzyme Microb Technol ; 148: 109810, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34116766

RESUMO

Although various phase transfer techniques have been used to make hydrophobic nanoparticles (NPs) water-soluble. However, these techniques have been limited by inefficient surface modification strategy that often stable NPs in aqueous solutions. Herein, we report the use of 3-aminophenylboronic acid (3-APBA) as a hydrophilic ligand for phase transfer of oleylamine (OA) capped Au NPs (OA@Au NPs) from non-hydrolytic system into aqueous solutions. The 3-APBA capped Au NPs (3-APBA@Au NPs) was mainly characterized using different analytical techniques to substantiate the efficiency of the phase transfer procedure. In this simple procedure, 3-APBA molecule was simultaneously used as both phase transfer and targeting ligand for bacteria recognition in one step. In principle, while free electron pair of amin (:NH2) group of 3-APBAbind to surface of hydrophobic Au NPs for phase transfer, diol group can bind to glycan on the membrane of Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA) through proper cis-diol configuration. In addition, the resulting 3-APBA@Au NP can effectively catalyze the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of sodium borohydride (NaBH4) in aqueous solution.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Aminas , Ácidos Borônicos , Ouro , Ligantes , Água
3.
ACS Omega ; 4(20): 18637-18644, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31737823

RESUMO

We report synthesis of monodispersed, stable, and colloidal gold nanoparticles (Au NPs) using anthocyanin-riched red raspberry (Rubus idaeus), strawberry (Fragaria ananassa), and blackberry (Rubus fruticosus) extracts as functions of concentration of HAuCl4·3H2O and berries extract, reaction time, and reaction pH values (pHs) and demonstrate their unique stability in highly concentrated salt (sodium chloride, NaCl) solutions. The catecholamine group of anthocyanin molecules give preferential coordination reaction with gold ions (Au3+) for creating anthocyanin-Au3+ complexes, which may lead to initiation of nucleation for seed formation, and then, oxidation of catecholamine results in a flow of electrons from anthocyanins to Au seeds for anisotropic growth. Finally, the surface of the Au NPs is saturated with anthocyanins, and formation of monodispersed and stable Au NPs with narrow size distribution is completed. We also report the effects of some experimental parameters including concentrations of Au3+ ions and barrier extracts, reaction time, and pHs on formation of the Au NPs with rational explanations. The long-term colloidal stability of the Au NPs in the 400 mM NaCl solution was comparatively studied with commercial Au NPs (citrate capped). As results show that anthocyanin-riched berry extracts directed Au NPs we proposed here can be considered as promising and safe tools for biomedical applications owing to their highly much colloidal dispersibility and salt tolerance properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...