Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38586014

RESUMO

Current COVID-19 mRNA vaccines delivered intramuscularly (IM) induce effective systemic immunity, but with suboptimal immunity at mucosal sites, limiting their ability to impart sterilizing immunity. There is strong interest in rerouting immune responses induced in the periphery by parenteral vaccination to the portal entry site of respiratory viruses, such as SARS-CoV-2, by mucosal vaccination. We previously demonstrated the combination adjuvant, NE/IVT, consisting of a nanoemulsion (NE) and an RNA-based RIG-I agonist (IVT) induces potent systemic and mucosal immune responses in protein-based SARS-CoV-2 vaccines administered intranasally (IN). Herein, we demonstrate priming IM with mRNA followed by heterologous IN boosting with NE/IVT adjuvanted recombinant antigen induces strong mucosal and systemic antibody responses and enhances antigen-specific T cell responses in mucosa-draining lymph nodes compared to IM/IM and IN/IN prime/boost regimens. While all regimens induced cross-neutralizing antibodies against divergent variants and sterilizing immunity in the lungs of challenged mice, mucosal vaccination, either as homologous prime/boost or heterologous IN boost after IM mRNA prime was required to impart sterilizing immunity in the upper respiratory tract. Our data demonstrate the benefit of hybrid regimens whereby strong immune responses primed via IM vaccination are rerouted by IN vaccination to mucosal sites to provide optimal protection to SARS-CoV-2.

2.
NPJ Vaccines ; 8(1): 96, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386041

RESUMO

Multiple FDA-approved SARS-CoV-2 vaccines currently provide excellent protection against severe disease. Despite this, immunity can wane relatively fast, particularly in the elderly and novel viral variants capable of evading infection- and vaccination-induced immunity continue to emerge. Intranasal (IN) vaccination more effectively induces mucosal immune responses than parenteral vaccines, which would improve protection and reduce viral transmission. Here, we developed a rationally designed IN adjuvant consisting of a combined nanoemulsion (NE)-based adjuvant and an RNA-based RIG-I agonist (IVT DI) to drive more robust, broadly protective antibody and T cell responses. We previously demonstrated this combination adjuvant (NE/IVT) potently induces protective immunity through synergistic activation of an array of innate receptors. We now demonstrate that NE/IVT with the SARS-CoV-2 receptor binding domain (RBD), induces robust and durable humoral, mucosal, and cellular immune responses of equivalent magnitude and quality in young and aged mice. This contrasted with the MF59-like intramuscular adjuvant, Addavax, which showed a decrease in immunogenicity with age. Robust antigen-specific IFN-γ/IL-2/TNF-α was induced in both young and aged NE/IVT-immunized animals, which is significant as their reduced production is associated with suboptimal protective immunity in the elderly. These findings highlight the potential of adjuvanted mucosal vaccines for improving protection against COVID-19.

3.
Sci Rep ; 13(1): 5224, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997624

RESUMO

Recombinant protein-based SARS-CoV-2 vaccines are needed to fill the vaccine equity gap. Because protein-subunit based vaccines are easier and cheaper to produce and do not require special storage/transportation conditions, they are suitable for low-/middle-income countries. Here, we report our vaccine development studies with the receptor binding domain of the SARS-CoV-2 Delta Plus strain (RBD-DP) which caused increased hospitalizations compared to other variants. First, we expressed RBD-DP in the Pichia pastoris yeast system and upscaled it to a 5-L fermenter for production. After three-step purification, we obtained RBD-DP with > 95% purity from a protein yield of > 1 g/L of supernatant. Several biophysical and biochemical characterizations were performed to confirm its identity, stability, and functionality. Then, it was formulated in different contents with Alum and CpG for mice immunization. After three doses of immunization, IgG titers from sera reached to > 106 and most importantly it showed high T-cell responses which are required for an effective vaccine to prevent severe COVID-19 disease. A live neutralization test was performed with both the Wuhan strain (B.1.1.7) and Delta strain (B.1.617.2) and it showed high neutralization antibody content for both strains. A challenge study with SARS-CoV-2 infected K18-hACE2 transgenic mice showed good immunoprotective activity with no viruses in the lungs and no lung inflammation for all immunized mice.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Camundongos Transgênicos , Saccharomyces cerevisiae , Anticorpos Antivirais , Anticorpos Neutralizantes
4.
Proteins ; 88(11): 1447-1457, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32526069

RESUMO

Understanding the determinants of antibody specificity is one of the challenging tasks in antibody development. Monospecific antibodies are still dominant in approved antibody therapeutics but there is a significant body of work to show that multispecific antibodies can increase the overall therapeutic effect. Dual-specific or "Two-in-One" antibodies can bind to two different antigens separately with the same antigen-binding site as opposed to bispecifics, which simultaneously bind to two different antigens through separate antigen-binding units. These nonstandard dual-specific antibodies were recently shown to be promising for new antibody-based therapeutics. Here, we physicochemically and structurally analyzed six different antibodies of which two are monospecific and four are dual-specific antibodies derived from monospecific templates to gain insight about dual-specificity determinants. These dual-specific antibodies can target both human epidermal growth factor receptor 2 and vascular endothelial growth factor at different binding affinities. We showed that a particular region of clustered Vernier zone residues might play key roles in gaining dual specificity. While there are minimal intramolecular interactions between a certain Vernier zone region, namely LV4 and LCDR1 of monospecific template, there is a significant structural change and consequently close contact formation between LV4-LCDR1 loops of derived dual-specific antibodies. Although Vernier zone residues were previously shown to be important for humanization applications, they are mostly underestimated in the literature. Here, we also aim to resurrect Vernier zone residues for antibody engineering efforts.


Assuntos
Anticorpos Biespecíficos/química , Antígenos/química , Antineoplásicos Imunológicos/química , Região Variável de Imunoglobulina/química , Receptor ErbB-2/química , Fator A de Crescimento do Endotélio Vascular/química , Sequência de Aminoácidos , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/metabolismo , Afinidade de Anticorpos , Especificidade de Anticorpos , Antígenos/genética , Antígenos/imunologia , Antineoplásicos Imunológicos/metabolismo , Sítios de Ligação , Sítios de Ligação de Anticorpos/genética , Humanos , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Alinhamento de Sequência , Homologia Estrutural de Proteína , Termodinâmica , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/imunologia
5.
Turk J Biol ; 43(1): 1-12, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930630

RESUMO

The number of therapeutic antibodies in preclinical, clinical, or approved phases has been increasing exponentially, mostly due to their known successes. Development of antibody engineering methods has substantially hastened the development of therapeutic antibodies. A variety of protein engineering techniques can be applied to antibodies to improve their afinity and/or biophysical properties such as solubility and stability. Antibody fragments (where all or some parts of constant regions are eliminated while the essential antigen binding region is preserved) are more suitable for protein engineering techniques because there are many in vitro screening technologies available for antibody fragments but not full-length antibodies. Improvement of biophysical characteristics is important in the early development phase because most antibodies fail at the later stage of development and this leads to loss of resources and time. Here, we review directed evolution and rational design methods to improve antibody properties. Recent developments in rational design approaches and antibody display technologies, and especially phage display, which was recently awarded the 2018 Nobel Prize, are discussed to be used in antibody research and development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...