Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 40(15): 1509-1520, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30811040

RESUMO

We provide a didactic introduction to 2nd-quantized representation of complex electron-hole (e/h) excitation patterns in general configuration interaction wave functions built from orthonormal local orbitals of natural atomic orbital or natural bond orbital (NBO) type. Such local excitation patterns of chemically oriented basis functions can be related to the resonance concepts of valence bond theory, and quantitative evaluation of the associated excitation probabilities then provides an alternative assessment of resonance "weighting" that may be compared with those of NBO-based natural resonance theory. We illustrate the usefulness of anticommutation relations in deriving Pauli-compliant expressions for allowed excitation patterns, showing how the exciton-like promotions φλ → φν (creating an e/h excitation with h in φλ and e in φν ) impose strict constraints on associated e/h-probabilities (requiring, e.g., that the e-probability for an electron "to be" or "not to be" in φν must be rigorously linked to the complementary h-probabilities in φλ ). Specific examples are presented of the quantum Boolean logic for four or six local spin-orbitals, with emphasis on Natural Poly-Electron Population Analysis (NPEPA) evaluation of VB-type covalent and ionic contributions in conventional 2-center bonding, resonance weightings in 3-center hydrogen bonding, and general characteristics of higher-order m-center bonding motifs for m > 3. Numerical results are presented for methylamine, acrolein, and water dimer to illustrate current NPEPA implementation in the NBO program. © 2019 Wiley Periodicals, Inc.

2.
RSC Adv ; 8(59): 34041-34046, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-35548812

RESUMO

The current carried by a material subject to an electric field is microscopically inhomogeneous and can be modelled using scattering theory, in which electrons undergo collisions with the microscopic objects they encounter. We herein present a methodology for parameter-free calculations of the current density from first-principles using density functional theory, Wannier functions and scattering matrices. The methodology is used on free-standing AB-stacked bilayer penta-silicene. This new Si allotrope has been proposed to have a higher stability than any of its hexagonal bilayer counterparts. Furthermore, its semiconducting properties make it ideal for use in electronic components. We unveil the role of the p z orbitals in the transport through a three-dimensional quantum wire and present current density streamlines that reveal the locations of the highest charge flow. The present methodology can be expanded to accommodate many electron degrees of freedom, the application of electromagnetic fields and many other physical phenomena involved in device operation.

3.
J Comput Chem ; 27(15): 1883-91, 2006 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-16983670

RESUMO

The strength and, mainly, the direction of a static electric field can be used to control delocalization effects occurring in a non-polar pi-system. The delocalization energy, the weights, and the probabilities of some local electronic structures, the behavior of electron pairs, and the electronic fluctuations are considered and examined in cis-butadiene, used as model system. The effects of the electric field are detected and evaluated in the basis of natural orbital spaces appropriate to investigate the behavior of one- and poly-electron distributions. The consequences of modifying the delocalization effects on structural changes are also investigated. Full geometry optimizations in both Hartree-Fock and MP2 levels show that the changes in bond lengths, guided by the changes of the behavior of the electronic assembly, can be controlled by means of the electric field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...