Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Bioinformatics ; 2012: 876976, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23008709

RESUMO

Reliable identification of copy number aberrations (CNA) from comparative genomic hybridization data would be improved by the availability of a generalised method for processing large datasets. To this end, we developed swatCGH, a data analysis framework and region detection heuristic for computational grids. swatCGH analyses sequentially displaced (sliding) windows of neighbouring probes and applies adaptive thresholds of varying stringency to identify the 10% of each chromosome that contains the most frequently occurring CNAs. We used the method to analyse a published dataset, comparing data preprocessed using four different DNA segmentation algorithms, and two methods for prioritising the detected CNAs. The consolidated list of the most commonly detected aberrations confirmed the value of swatCGH as a simplified high-throughput method for identifying biologically significant CNA regions of interest.

2.
J Pathol ; 225(3): 448-62, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21952923

RESUMO

Oncostatin M receptor (OSMR) shows frequent copy number gain and overexpression in advanced cervical squamous cell carcinoma (SCC). We used cell-based in vitro assays, RNA interference, and integrative gene expression profiling to investigate the functional significance of this observation. CaSki and SW756 were selected as representative cervical SCC cells that overexpressed OSMR, and ME180 and MS751 as cells that did not. The STAT-dependent pro-angiogenic factors VEGF-A and ID1 were rapidly induced by OSM in CaSki/SW756 but not in ME180/MS751. However, rapid induction did occur in MS751 following forced OSMR overexpression, while depleting OSMR in CaSki abrogated VEGF-A expression. Conditioned medium from both CaSki and SW756 stimulated endothelial tube formation in vitro, effects that were inhibited by depleting OSMR in the SCC cells. For both CaSki and SW756, migration in a wound healing assay and invasion through Matrigel were stimulated by OSM and consistently inhibited by OSMR depletion. The phenotype was rescued by transfection with OSMR containing a silent mutation that provided specific siRNA resistance. Overall, there was a positive correlation between OSMR levels and invasiveness. We used gene expression profiling to identify genes induced by OSM in CaSki/SW756 but not in ME180/MS751. The most prominent gene ontology category groups for the differentially expressed genes were cell motility/invasion, angiogenesis, signal transduction, and apoptosis. We also profiled 23 cervical SCC samples, identifying genes that were differentially expressed in cases with OSMR overexpression versus those without. Integration of the datasets identified 15 genes that showed consistent differential expression in association with OSMR levels in vitro and in vivo. We conclude that OSMR overexpression in cervical SCC cells provides increased sensitivity to OSM, which induces pro-malignant changes. OSMR is a potential prognostic and therapeutic target in cervical SCC. The genes that mediate OSM:OSMR effects will be valuable indicators of the effectiveness of antibody blockade in pre-clinical systems.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neovascularização Patológica/metabolismo , Subunidade beta de Receptor de Oncostatina M/biossíntese , Neoplasias do Colo do Útero/metabolismo , Antineoplásicos/farmacologia , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/irrigação sanguínea , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Invasividade Neoplásica , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Oncostatina M/farmacologia , Subunidade beta de Receptor de Oncostatina M/genética , RNA Neoplásico/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/irrigação sanguínea , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
BMC Genomics ; 10: 548, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19930549

RESUMO

BACKGROUND: The differential expression pattern of microRNAs (miRNAs) during mammary gland development might provide insights into their role in regulating the homeostasis of the mammary epithelium. Our aim was to analyse these regulatory functions by deriving a comprehensive tissue-specific combined miRNA and mRNA expression profile of post-natal mouse mammary gland development.We measured the expression of 318 individual murine miRNAs by bead-based flow-cytometric profiling of whole mouse mammary glands throughout a 16-point developmental time course, including juvenile, puberty, mature virgin, gestation, lactation, and involution stages. In parallel whole-genome mRNA expression data were obtained. RESULTS: One third (n = 102) of all murine miRNAs analysed were detected during mammary gland development. MicroRNAs were represented in seven temporally co-expressed clusters, which were enriched for both miRNAs belonging to the same family and breast cancer-associated miRNAs. Global miRNA and mRNA expression was significantly reduced during lactation and the early stages of involution after weaning. For most detected miRNA families we did not observe systematic changes in the expression of predicted targets. For miRNA families whose targets did show changes, we observed inverse patterns of miRNA and target expression. The data sets are made publicly available and the combined expression profiles represent an important community resource for mammary gland biology research. CONCLUSION: MicroRNAs were expressed in likely co-regulated clusters during mammary gland development. Breast cancer-associated miRNAs were significantly enriched in these clusters. The mechanism and functional consequences of this miRNA co-regulation provide new avenues for research into mammary gland biology and generate candidates for functional validation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , MicroRNAs/genética , Animais , Mama/crescimento & desenvolvimento , Mama/metabolismo , Mama/fisiologia , Neoplasias da Mama/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Hibridização In Situ , Lactação/genética , Glândulas Mamárias Animais/fisiologia , Camundongos , Especificidade de Órgãos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...