Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38607068

RESUMO

Lysophosphatidic acid (LPA) is a phospholipid that displays potent signalling activities that are regulated in both an autocrine and paracrine manner. It can be found both extra- and intracellularly, where it interacts with different receptors to activate signalling pathways that regulate a plethora of cellular processes, including mitosis, proliferation and migration. LPA metabolism is complex, and its biosynthesis and catabolism are under tight control to ensure proper LPA levels in the body. In cancer patient specimens, LPA levels are frequently higher compared to those of healthy individuals and often correlate with poor responses and more aggressive disease. Accordingly, LPA, through promoting cancer cell migration and invasion, enhances the metastasis and dissemination of tumour cells. In this review, we summarise the role of LPA in the regulation of critical aspects of tumour biology and further discuss the available pre-clinical and clinical evidence regarding the feasibility and efficacy of targeting LPA metabolism for effective anticancer therapy.


Assuntos
Neoplasias , Humanos , Transdução de Sinais/fisiologia , Movimento Celular , Lisofosfolipídeos/metabolismo
2.
Cancers (Basel) ; 14(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36497283

RESUMO

Breast cancer is a common cancer in women. Breast cancer cells synthesize large amounts of hyaluronan to assist their proliferation, survival, migration and invasion. Accumulation of hyaluronan and overexpression of its receptor CD44 and hyaluronidase TMEM2 in breast tumors correlate with tumor progression and reduced overall survival of patients. Currently, the only known small molecule inhibitor of hyaluronan synthesis is 4-methyl-umbelliferone (4-MU). Due to the importance of hyaluronan for breast cancer progression, our aim was to identify new, potent and chemically distinct inhibitors of its synthesis. Here, we report a new small molecule inhibitor of hyaluronan synthesis, the thymidine analog 5'-Deoxy-5'-(1,3-Diphenyl-2-Imidazolidinyl)-Thymidine (DDIT). This compound is more potent than 4-MU and displays significant anti-tumorigenic properties. Specifically, DDIT inhibits breast cancer cell proliferation, migration, invasion and cancer stem cell self-renewal by suppressing HAS-synthesized hyaluronan. DDIT appears as a promising lead compound for the development of inhibitors of hyaluronan synthesis with potential usefulness in breast cancer treatment.

3.
Am J Physiol Cell Physiol ; 323(1): C145-C158, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649255

RESUMO

Hyaluronan is one of the most abundant macromolecules of the extracellular matrix and regulates several physiological cell and tissue properties. However, hyaluronan has been shown to accumulate together with its receptors in various cancers. In tumors, accumulation of hyaluronan system components (hyaluronan synthesizing/degrading enzymes and interacting proteins) associates with poor outcomes for the patients. In this article, we review the main roles of hyaluronan in normal physiology and cancer and further discuss the targeting of hyaluronan system as an applicable therapeutic strategy.


Assuntos
Ácido Hialurônico , Neoplasias , Matriz Extracelular/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Neoplasias/metabolismo
4.
Front Oncol ; 11: 826865, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111687

RESUMO

Breast cancer exists in multiple subtypes some of which still lack a targeted and effective therapy. Cold atmospheric plasma (CAP) has been proposed as an emerging anti-cancer treatment modality. In this study, we investigated the effects of direct and indirect CAP treatment driven by the advantageous nanosecond pulsed discharge on breast cancer cells of different malignant phenotypes and estrogen receptor (ER) status, a major factor in the prognosis and therapeutic management of breast cancer. The main CAP reactive species in liquid (i.e. H2O2, NO 2 - /NO 3 - ) and gas phase were determined as a function of plasma operational parameters (i.e. treatment time, pulse voltage and frequency), while pre-treatment with the ROS scavenger NAC revealed the impact of ROS in the treatment. CAP treatment induced intense phenotypic changes and apoptosis in both ER+ and ER- cells, which is associated with the mitochondrial pathway as evidenced by the increased Bax/Bcl-2 ratio and cleavage of PARP-1. Interestingly, CAP significantly reduced CD44 protein expression (a major cancer stem cell marker and matrix receptor), while differentially affected the expression of proteases and inflammatory mediators. Collectively, the findings of the present study suggest that CAP suppresses breast cancer cell growth and regulates several effectors of the tumor microenvironment and thus it could represent an efficient therapeutic approach for distinct breast cancer subtypes.

5.
Matrix Biol Plus ; 6-7: 100031, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33543028

RESUMO

The oncogenic role of hyaluronan in several aspects of tumor biology has been well established. Recent studies by us and others suggest that inhibition of hyaluronan synthesis could represent an emerging therapeutic approach with significant clinical relevance in controlling different breast cancer subtypes, including triple-negative breast cancer. Epidemiological and preclinical studies have revealed the therapeutic potential of aspirin (acetyl salicylate), a classical anti-inflammatory drug, in patients with cancer. However, the underlying molecular mechanisms remain unknown. The present study demonstrates that salicylate, a break down product of aspirin in vivo, alters the organization of hyaluronan matrices by affecting the expression levels of hyaluronan synthesizing (HAS1, 2, 3) and degrading (HYAL-1, -2) enzymes, and that of hyaluronan receptor CD44. In particular, salicylate was found to potently activate AMPK, a kinase known to inhibit HAS2 activity, and caused a dose-dependent decrease of cell associated (intracellular and membrane-bound) as well as secreted hyaluronan, followed by the down-regulation of HAS2 and the induction of HYAL-2 and CD44 in metastatic breast cancer cells. These salicylate-mediated effects were associated with the redistribution of CD44 and actin cytoskeleton that resulted in a less motile cell phenotype. Interestingly, salicylate inhibited metastatic breast cancer cell proliferation and growth by inducing cell growth arrest without signs of apoptosis as evidenced by the substantial decrease of cyclin D1 protein and the absence of cleaved caspase-3, respectively. Collectively, our study offers a possible direction for the development of new matrix-based targeted treatments of metastatic breast cancer subtypes via inhibition of hyaluronan, a pro-angiogenic, pro-inflammatory and tumor promoting glycosaminoglycan.

6.
Semin Cancer Biol ; 62: 20-30, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31276783

RESUMO

Hyaluronan-rich matrices are abundant in ECM and are involved in biological processes, such as cell growth and migration. Hyaluronan is synthesized by the hyaluronan synthase family of enzymes, HAS1, HAS2 and HAS3; the HAS1 and HAS3 genes give rise to different transcripts through alternative splicing, and the HAS2 gene to a non-coding RNA antisense transcript in addition to the protein-coding transcript. Biosynthesis of hyaluronan increases during inflammation and cancer and is regulated by cytokines and growth factors. In addition to extracellular hyaluronan-rich matrices, cytoplasmic and nuclear forms of hyaluronan have been detected in normal and pathological processes. Extra- and intra-cellular hyaluronan binds to hyaluronan binding proteins, such as CD44, RHAMM, CDC37 and USP17, affecting cellular behavior. Although neither the exact mechanisms by which hyaluronan is present in the intracellular compartments, nor its function at these sites are currently understood, there are evidence that intracellular hyaluronan has important regulatory roles during cell cycle, cell motility, RNA translation and splicing, and autophagy.


Assuntos
Ácido Hialurônico/metabolismo , Espaço Intracelular/metabolismo , Animais , Transporte Biológico , Biomarcadores , Vias Biossintéticas , Suscetibilidade a Doenças , Matriz Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Ligação Proteica
7.
Cell Signal ; 63: 109377, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31362044

RESUMO

The prominent role of CD44 in tumor cell signaling together with its establishment as a cancer stem cell (CSC) marker for various tumor entities imply a key role for CD44 in CSC functional properties. Hyaluronan, the main ligand of CD44, is a major constituent of CSC niche and, therefore, the hyaluronan-CD44 signaling axis is of functional importance in this special microenvironment. This review aims to provide recent advances in the importance of hyaluronan-CD44 interactions in the acquisition and maintenance of a CSC phenotype. Hyaluronan-CD44 axis has a substantial impact on stemness properties of CSCs and drug resistance through induction of EMT program, oxidative stress resistance, secretion of extracellular vesicles/exosomes and epigenetic control. Potential therapeutic approaches targeting CSCs based on the hyaluronan-CD44 axis are also presented.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Receptores de Hialuronatos/fisiologia , Ácido Hialurônico/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Biomarcadores Tumorais/fisiologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos
8.
Matrix Biol ; 78-79: 118-138, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29673760

RESUMO

The malignant phenotype of various cancers is linked to enhanced expression of hyaluronan, a pro-angiogenic glycosaminoglycan whose expression is suppressed by 4-methylumbelliferone (4-MU), a non-toxic oral agent used as a dietary supplement to improve health and combat prostate cancer. In this study, we investigated the role of 4-MU in mammary carcinoma cells with distinct malignant phenotypes and estrogen receptor (ER) status, a major prognostic factor in the clinical management of breast cancers. We focused on two breast cancer cell lines, the low metastatic and ERα+ MCF-7 cells, and the highly-aggressive and ERα- MDA-MB-231 cells. Treatment with 4-MU caused a dose-dependent decrease of hyaluronan accumulation in the extracellular matrix as well as within the breast cancer cells, most prevalent in cells lacking ERα. This decrease in hyaluronan was accompanied by suppression of Hyaluronan Synthase 2 (HAS2), the major enzyme responsible for the synthesis of hyaluronan, and by induction of hyaluronidases (HYALs) -1 and -2. Moreover, 4-MU induced intense phenotypic changes and substantial loss of CD44, a major hyaluronan receptor, from cell protrusions. Importantly, 4-MU evoked differential effects depending on the absence or presence of ERα. Only the ERα+ cells showed signs of apoptosis, as determined by cleaved PARP-1, and anoikis as shown by concurrent loss of E-cadherin and ß-catenin. Interestingly, 4-MU significantly reduced migration, adhesion and invasion of ERα- breast cancer cells, and concurrently reduced the expression and activity of several matrix degrading enzymes and pro-inflammatory molecules with tumor-promoting functions. Collectively, our findings suggest that 4-MU could represent a novel therapeutic for specific breast cancer subtypes with regard to their ER status via suppression of hyaluronan synthesis and regulation of HAS2, CD44, matrix-degrading enzymes and inflammatory mediators.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Receptores de Hialuronatos/metabolismo , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Himecromona/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Receptores de Estrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...