Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 188: 114466, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823863

RESUMO

The effect of microfluidization treatment on the primary, secondary, and tertiary structure of soybean protein isolate (SPI) was investigated. The samples were treated with and without controlling the temperature and circulated in the system 1, 3, and 5 times at high pressure (137 MPa). Then, the treated samples were freeze-dried and reconstituted in water to check the impact of the microfluidization on two different states: powder and solution. Regarding the primary structure, the SDS-PAGE analysis under reducing conditions showed that the protein bands remained unchanged when exposed to microfluidization treatment. When the temperature was controlled for the samples in their powder state, a significant decrease in the quantities of ß-sheet and random coil and a slight reduction in α-helix content was noticed. The observed decrease in ß-sheet and the increase in ß-turns in treated samples indicated that microfluidization may lead to protein unfolding, opening the hydrophobic regions. Additionally, a lower amount of α-helix suggests a higher protein flexibility. After reconstitution in water, a significant difference was observed only in α-helix, ß-sheet and ß-turn. Related to the tertiary structure, microfluidization increases the surface hydrophobicity. Among all the conditions tested, the samples where the temperature is controlled seem the most suitable.


Assuntos
Manipulação de Alimentos , Interações Hidrofóbicas e Hidrofílicas , Pós , Proteínas de Soja , Proteínas de Soja/química , Manipulação de Alimentos/métodos , Estrutura Secundária de Proteína , Temperatura , Projetos Piloto , Eletroforese em Gel de Poliacrilamida , Glycine max/química , Soluções , Liofilização
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122278, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36592596

RESUMO

Pesticide residues in vegetables are potentially toxic components to humans and can cause serious health problems. To remove pesticide residues from fresh agricultural products and improve consumer food safety, various pesticide removal methods have been investigated over the past decades. In this study, the effectiveness of laboratory and pilot scale ultrasonic cleaning on the removal of boscalid and pyraclostrobin residues from lettuce was examined. 2D fluorescence spectroscopy, 3D fluorescence spectroscopy represented by excitation-emission matrix (EEM), and parallel factor analysis (PARAFAC) were used to characterize and discriminate the fluorescence signatures of these pesticides in the cleaning water to determine the effectiveness of the ultrasonic cleaning method as a function of the level of pesticide removal. The 2D fluorescence results showed that the rate of removal of boscalid by ultrasonics at the laboratory scale increased with the cleaning time. The ultrasonic treatment showed a higher cleaning efficiency compared to only soaking in distilled water for 10 min. The same trends were observed at the pilot scale. The EEM also showed differences in the concentration of pesticides removed by ultrasonication between the different parts of the lettuce, the concentration was higher in the upper part than the lower part. This study showed that ultrasonication is an effective technique for the removal of pesticide residues on lettuce, and it also showed the significant potential of fluorescence spectroscopy coupled with PARAFAC for the discrimination and characterization of pesticides.


Assuntos
Resíduos de Praguicidas , Praguicidas , Humanos , Resíduos de Praguicidas/análise , Lactuca/química , Espectrometria de Fluorescência/métodos , Praguicidas/análise , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...