Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38826402

RESUMO

The sodium-coupled citrate transporter (NaCT, SLC13A5) mediates citrate uptake across the plasma membrane via an inward Na + gradient. Mutations in SLC13A5 cause early infantile epileptic encephalopathy type-25 (EIEE25, SLC13A5 Epilepsy) due to impaired citrate uptake in neurons. Despite clinical identification of disease-causing mutations, underlying mechanisms and cures remain elusive. We mechanistically classify the molecular phenotypes of six mutations. C50R, T142M, and T227M exhibit impaired citrate transport despite normal expression at the cell surface. G219R, S427L, and L488P are hampered by low protein expression, ER retention, and reduced transport. Mutants' mRNA levels resemble wildtype, suggesting post-translational defects. Class II mutations display immature core-glycosylation and shortened half-lives, indicating protein folding defects. These experiments provide a comprehensive understanding of the mutation's defects in SLC13A5 Epilepsy at the biochemical and molecular level and shed light into the trafficking pathway(s) of NaCT. The two classes of mutations will require fundamentally different treatment approaches to either restore transport function, or enable correction of protein folding defects. Summary: Loss-of-function mutations in the SLC13A5 causes SLC13A5-Epilepsy, a devastating disease characterized by neonatal epilepsy. Currently no cure is available. We clarify the molecular-level defects to guide future developments for phenotype-specific treatment of disease-causing mutations.

2.
J Mol Biol ; 436(6): 168492, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360088

RESUMO

Many insulin gene variants alter the protein sequence and result in monogenic diabetes due to insulin insufficiency. However, the molecular mechanisms of various disease-causing mutations are unknown. Insulin is synthesized as preproinsulin containing a signal peptide (SP). SPs of secreted proteins are recognized by the signal recognition particle (SRP) or by another factor in a SRP-independent pathway. If preproinsulin uses SRP-dependent or independent pathways is still debatable. We demonstrate by the use of site-specific photocrosslinking that the SRP subunit, SRP54, interacts with the preproinsulin SP. Moreover, SRP54 depletion leads to the decrease of insulin mRNA and protein expression, supporting the involvement of the RAPP protein quality control in insulin biogenesis. RAPP regulates the quality of secretory proteins through degradation of their mRNA. We tested five disease-causing mutations in the preproinsulin SP on recognition by SRP and on their effects on mRNA and protein levels. We demonstrate that the effects of mutations are associated with their position in the SP and their severity. The data support diverse molecular mechanisms involved in the pathogenesis of these mutations. We show for the first time the involvement of the RAPP protein quality control pathway in insulin biogenesis that is implicated in the development of neonatal diabetes caused by the Leu13Arg mutation.


Assuntos
Insulina , Precursores de Proteínas , Estabilidade de RNA , Partícula de Reconhecimento de Sinal , Humanos , Recém-Nascido , Diabetes Mellitus , Insulina/genética , Insulina/metabolismo , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo
4.
Biology (Basel) ; 12(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38132362

RESUMO

miRNAs moderately inhibit the translation and enhance the degradation of their target mRNAs via cognate binding sites located predominantly in the 3'-untranslated regions (UTR). Paradoxically, miRNA targets are also polysome-associated. We studied the polysome association by the comparative translationally less-active light- and more-active heavy-polysome profiling of a wild type (WT) human cell line and its isogenic mutant (MT) with a disrupted DICER1 gene and, thus, mature miRNA production. As expected, the open reading frame (ORF) length is a major determinant of light- to heavy-polysome mRNA abundance ratios, but is rendered less powerful in WT than in MT cells by miRNA-regulatory activities. We also observed that miRNAs tend to target mRNAs with longer ORFs, and that adjusting the mRNA abundance ratio with the ORF length improves its correlation with the 3'-UTR miRNA-binding-site count. In WT cells, miRNA-targeted mRNAs exhibit higher abundance in light relative to heavy polysomes, i.e., light-polysome enrichment. In MT cells, the DICER1 disruption not only significantly abrogated the light-polysome enrichment, but also narrowed the mRNA abundance ratio value range. Additionally, the abrogation of the enrichment due to the DICER1 gene disruption, i.e., the decreases of the ORF-length-adjusted mRNA abundance ratio from WT to MT cells, exhibits a nearly perfect linear correlation with the 3'-UTR binding-site count. Transcription factors and protein kinases are the top two most enriched mRNA groups. Taken together, the results provide evidence for the light-polysome enrichment of miRNA-targeted mRNAs to reconcile polysome association and moderate translation inhibition, and that ORF length is an important, though currently under-appreciated, transcriptome regulation parameter.

5.
NAR Genom Bioinform ; 5(4): lqad093, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37859801

RESUMO

Secreted and membrane proteins represent a third of all cellular proteins and contain N-terminal signal peptides that are required for protein targeting to endoplasmic reticulum (ER). Mutations in signal peptides affect protein targeting, translocation, processing, and stability, and are associated with human diseases. However, only a few of them have been identified or characterized. In this report, we identified pathogenic signal peptide variants across the human genome using bioinformatic analyses and predicted the molecular mechanisms of their pathology. We recovered more than 65 thousand signal peptide mutations, over 11 thousand we classified as pathogenic, and proposed framework for distinction of their molecular mechanisms. The pathogenic mutations affect over 3.3 thousand genes coding for secreted and membrane proteins. Most pathogenic mutations alter the signal peptide hydrophobic core, a critical recognition region for the signal recognition particle, potentially activating the Regulation of Aberrant Protein Production (RAPP) quality control and specific mRNA degradation. The remaining pathogenic variants (about 25%) alter either the N-terminal region or signal peptidase processing site that can result in translocation deficiencies at the ER membrane or inhibit protein processing. This work provides a conceptual framework for the identification of mutations across the genome and their connection with human disease.

6.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834241

RESUMO

Alzheimer's disease (AD) is one of the most common neurodegenerative disorders associated with age or inherited mutations. It is characterized by severe dementia in the late stages that affect memory, cognitive functions, and daily life overall. AD progression is linked to the accumulation of cytotoxic amyloid beta (Aß) and hyperphosphorylated tau protein combined with other pathological features such as synaptic loss, defective energy metabolism, imbalances in protein, and metal homeostasis. Several treatment options for AD are under investigation, including antibody-based therapy and stem cell transplantation. Amyloid precursor protein (APP) is a membrane protein considered to play a main role in AD pathology. It is known that APP in physiological conditions follows a non-amyloidogenic pathway; however, it can proceed to an amyloidogenic scenario, which leads to the generation of extracellular deleterious Aß plaques. Not all steps of APP biogenesis are clear so far, and these questions should be addressed in future studies. AD is a complex chronic disease with many factors that contribute to disease progression.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Membrana
8.
Nat Commun ; 14(1): 2605, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147291

RESUMO

Leishmania is a unicellular protozoan that has a limited transcriptional control and mostly uses post-transcriptional regulation of gene expression, although the molecular mechanisms of the process are still poorly understood. Treatments of leishmaniasis, pathologies associated with Leishmania infections, are limited due to drug resistance. Here, we report dramatic differences in mRNA translation in antimony drug-resistant and sensitive strains at the full translatome level. The major differences (2431 differentially translated transcripts) were demonstrated in the absence of the drug pressure supporting that complex preemptive adaptations are needed to efficiently compensate for the loss of biological fitness once they are exposed to the antimony. In contrast, drug-resistant parasites exposed to antimony activated a highly selective translation of only 156 transcripts. This selective mRNA translation is associated with surface protein rearrangement, optimized energy metabolism, amastins upregulation, and improved antioxidant response. We propose a novel model that establishes translational control as a major driver of antimony-resistant phenotypes in Leishmania.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose , Humanos , Leishmania/genética , Antimônio/farmacologia , Antiprotozoários/farmacologia , Resistência a Medicamentos/genética
9.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108644

RESUMO

Ribosomes, in general, are viewed as constitutive macromolecular machines where protein synthesis takes place; however, this view has been recently challenged, supporting the hypothesis of ribosome specialization and opening a completely new field of research. Recent studies have demonstrated that ribosomes are heterogenous in their nature and can provide another layer of gene expression control by regulating translation. Heterogeneities in ribosomal RNA and ribosomal proteins that compose them favor the selective translation of different sub-pools of mRNAs and functional specialization. In recent years, the heterogeneity and specialization of ribosomes have been widely reported in different eukaryotic study models; however, few reports on this topic have been made on protozoa and even less on protozoa parasites of medical importance. This review analyzes heterogeneities of ribosomes in protozoa parasites highlighting the specialization in their functions and their importance in parasitism, in the transition between stages in their life cycle, in the change of host and in response to environmental conditions.


Assuntos
Parasitos , Animais , Parasitos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Proteínas Ribossômicas/metabolismo , RNA Ribossômico/genética
10.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047306

RESUMO

Ribosomal heterogeneity exists within cells and between different cell types, at specific developmental stages, and occurs in response to environmental stimuli. Mounting evidence supports the existence of specialized ribosomes, or specific changes to the ribosome that regulate the translation of a specific group of transcripts. These alterations have been shown to affect the affinity of ribosomes for certain mRNAs or change the cotranslational folding of nascent polypeptides at the exit tunnel. The identification of specialized ribosomes requires evidence of the incorporation of different ribosomal proteins or of modifications to rRNA and/or protein that lead(s) to physiologically relevant changes in translation. In this review, we summarize ribosomal heterogeneity and specialization in mammals and discuss their relevance to several human diseases.


Assuntos
Biossíntese de Proteínas , Ribossomos , Animais , Humanos , Ribossomos/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , RNA Ribossômico/genética , Peptídeos/metabolismo , Mamíferos/metabolismo
11.
J Mol Biol ; 434(22): 167832, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36210597

RESUMO

Regulation of Aberrant Protein Production (RAPP) is a protein quality control in mammalian cells. RAPP degrades mRNAs of nascent proteins not able to associate with their natural interacting partners during synthesis at the ribosome. However, little is known about the molecular mechanism of the pathway, its substrates, or its specificity. The Signal Recognition Particle (SRP) is the first interacting partner for secretory proteins. It recognizes signal sequences of the nascent polypeptides when they are exposed from the ribosomal exit tunnel. Here, we reveal the generality of the RAPP pathway on the whole transcriptome level through depletion of human SRP54, an SRP subunit. This depletion triggers RAPP and leads to decreased expression of the mRNAs encoding a number of secretory and membrane proteins. The loss of SRP54 also leads to the dramatic upregulation of a specific network of HSP70/40/90 chaperones (HSPA1A, DNAJB1, HSP90AA1, and others), increased ribosome associated ubiquitination, and change in expression of RPS27 and RPS27L suggesting ribosome rearrangement. These results demonstrate the complex nature of defects in protein trafficking, mRNA and protein quality control, and provide better understanding of their mechanisms at the ribosome.


Assuntos
Ribossomos , Partícula de Reconhecimento de Sinal , Estresse Fisiológico , Humanos , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Peptídeos/metabolismo , Biossíntese de Proteínas , Sinais Direcionadores de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo , Ribossomos/metabolismo , Estabilidade de RNA
12.
Front Genet ; 13: 898083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754847

RESUMO

The signal recognition particle (SRP) is a ribonucleoprotein complex with dual functions. It co-translationally targets proteins with a signal sequence to the endoplasmic reticulum (ER) and protects their mRNA from degradation. If SRP is depleted or cannot recognize the signal sequence, then the Regulation of Aberrant Protein Production (RAPP) is activated, which results in the loss of secretory protein mRNA. If SRP recognizes the substrates but is unable to target them to ER, they may mislocalize or degrade. All these events lead to dramatic consequence for protein biogenesis, activating protein quality control pathways, and creating pressure on cell physiology, and might lead to the pathogenesis of disease. Indeed, SRP dysfunction is involved in many different human diseases, including: congenital neutropenia; idiopathic inflammatory myopathy; viral, protozoal, and prion infections; and cancer. In this work, we analyze diseases caused by SRP failure and discuss their possible molecular mechanisms.

13.
Cells ; 10(10)2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34685771

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder classified by the loss of dopaminergic neurons in the substantia nigra pars compacta, the region of the brain that is responsible for motor control. Surviving neurons in this region contain aggregated protein alpha-Synuclein (αSyn) in the form of cytoplasmic inclusions, referred to as Lewy bodies. Changes in αSyn expression are also associated with PD and its progression. Previously, we demonstrated that signal recognition particle (SRP) and Argonaute 2 (AGO2) proteins are involved in protein quality control at the ribosome during translation. We also demonstrated that SRP has an mRNA protection function in addition to a protein targeting function, thus controlling mRNA and protein expression. In this study, we tested involvement of these factors in αSyn biogenesis. We hypothesize that loss of these factors may interfere with αSyn expression, and subsequently, be associated with PD. Using depletion assays in human cell culture and analysis of these proteins in the brains of deceased PD patients, we demonstrate that SRP and AGO2 are involved in the control of αSyn expression and AGO2 has reduced expression in PD. We show for the first time that SRP is involved in mRNA protection of αSyn, a protein that does not have a signal sequence or transmembrane span. Our findings suggest that SRP may interact with a hydrophobic domain in the middle of αSyn during translation. Understanding the molecular mechanisms controlling αSyn biogenesis in cells is vital to developing preventative therapies against PD.


Assuntos
Doença de Parkinson/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , alfa-Sinucleína/biossíntese , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Células HeLa , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Substância Negra/metabolismo , Substância Negra/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
14.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208095

RESUMO

Signal recognition particle (SRP) is an RNA and protein complex that exists in all domains of life. It consists of one protein and one noncoding RNA in some bacteria. It is more complex in eukaryotes and consists of six proteins and one noncoding RNA in mammals. In the eukaryotic cytoplasm, SRP co-translationally targets proteins to the endoplasmic reticulum and prevents misfolding and aggregation of the secretory proteins in the cytoplasm. It was demonstrated recently that SRP also possesses an earlier unknown function, the protection of mRNAs of secretory proteins from degradation. In this review, we analyze the progress in studies of SRPs from different organisms, SRP biogenesis, its structure, and function in protein targeting and mRNA protection.


Assuntos
Biossíntese de Proteínas , Partícula de Reconhecimento de Sinal/metabolismo , Animais , Evolução Molecular , Humanos , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Partícula de Reconhecimento de Sinal/química
15.
Biomedicines ; 9(6)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205466

RESUMO

Leishmania parasites are trypanosomatid protozoans that cause leishmaniasis affecting millions of people worldwide. Sterols are important components of the plasma and organellar membranes. They also serve as precursors for the synthesis of signaling molecules. Unlike animals, Leishmania does not synthesize cholesterol but makes ergostane-based sterols instead. C-14-demethylase is a key enzyme involved in the biosynthesis of sterols and an important drug target. In Leishmania parasites, the inactivation of C-14-demethylase leads to multiple defects, including increased plasma membrane fluidity, mitochondrion dysfunction, hypersensitivity to stress and reduced virulence. In this study, we revealed a novel role for sterol synthesis in the maintenance of RNA stability and translation. Sterol alteration in C-14-demethylase knockout mutant leads to increased RNA degradation, reduced translation and impaired heat shock response. Thus, sterol biosynthesis in Leishmania plays an unexpected role in global gene regulation.

16.
Microorganisms ; 9(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918954

RESUMO

Leishmania parasites efficiently develop resistance against several types of drugs including antimonials, the primary antileishmanial drug historically implemented. The resistance to antimonials is considered to be a major risk factor for effective leishmaniasis treatment. To detect biomarkers/biopatterns for the differentiation of antimony-resistant Leishmania strains, we employed untargeted global mass spectrometry to identify intracellular lipids present in antimony sensitive and resistant parasites before and after antimony exposure. The lipidomic profiles effectively differentiated the sensitive and resistant phenotypes growing with and without antimony pressure. Resistant phenotypes were characterized by significant downregulation of phosphatidylcholines, sphingolipid decrease, and lysophosphatidylcholine increase, while sensitive phenotypes were characterized by the upregulation of triglycerides with long-chain fatty acids and a tendency toward the phosphatidylethanolamine decrease. Our findings suggest that the changes in lipid composition in antimony-resistant parasites contribute to the physiological response conducted to combat the oxidative stress unbalance caused by the drug. We have identified several lipids as potential biomarkers associated with the drug resistance.

17.
Mol Cell ; 79(4): 645-659.e9, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32692974

RESUMO

Stress granules (SGs) are membrane-less ribonucleoprotein condensates that form in response to various stress stimuli via phase separation. SGs act as a protective mechanism to cope with acute stress, but persistent SGs have cytotoxic effects that are associated with several age-related diseases. Here, we demonstrate that the testis-specific protein, MAGE-B2, increases cellular stress tolerance by suppressing SG formation through translational inhibition of the key SG nucleator G3BP. MAGE-B2 reduces G3BP protein levels below the critical concentration for phase separation and suppresses SG initiation. Knockout of the MAGE-B2 mouse ortholog or overexpression of G3BP1 confers hypersensitivity of the male germline to heat stress in vivo. Thus, MAGE-B2 provides cytoprotection to maintain mammalian spermatogenesis, a highly thermosensitive process that must be preserved throughout reproductive life. These results demonstrate a mechanism that allows for tissue-specific resistance against stress and could aid in the development of male fertility therapies.


Assuntos
Grânulos Citoplasmáticos/genética , DNA Helicases/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Biossíntese de Proteínas , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , Estresse Fisiológico/genética , Regiões 5' não Traduzidas , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/patologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Helicases/metabolismo , Feminino , Células HCT116 , Células HeLa , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Espermatogônias/citologia , Espermatogônias/patologia , Testículo/citologia , Testículo/metabolismo
18.
Nucleic Acids Res ; 48(9): 4681-4697, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32297952

RESUMO

The miRNA pathway has three segments-biogenesis, targeting and downstream regulatory effectors. We aimed to better understand their cellular control by exploring the miRNA-mRNA-targeting relationships. We first used human evolutionarily conserved sites. Strikingly, AGOs 1-3 are all among the top 14 mRNAs with the highest miRNA site counts, along with ANKRD52, the phosphatase regulatory subunit of the recently identified AGO phosphorylation cycle; and the AGO phosphorylation cycle mRNAs share much more than expected miRNA sites. The mRNAs for TNRC6, which acts with AGOs to channel miRNA-mediated regulatory actions onto specific mRNAs, are also heavily miRNA-targeted. In contrast, upstream miRNA biogenesis mRNAs are not, and neither are downstream regulatory effectors. In short, binding site enrichment in miRNA targeting machinery mRNAs, but neither upstream biogenesis nor downstream effector mRNAs, was observed, endowing a cellular capacity for intensive and specific feedback control of the targeting activity. The pattern was confirmed with experimentally determined miRNA-mRNA target relationships. Moreover, genetic experiments demonstrated cellular utilization of this capacity. Thus, we uncovered a capacity for intensive, and specific, feedback-regulation of miRNA targeting activity directly by miRNAs themselves, i.e. segment-specific feedback auto-regulation of miRNA pathway, complementing miRNAs pairing with transcription factors to form hybrid feedback-loop.


Assuntos
Proteínas Argonautas/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Proteínas Argonautas/genética , Sítios de Ligação , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Retroalimentação Fisiológica , Humanos , Fosforilação , RNA Mensageiro/química , RNA-Seq
19.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340274

RESUMO

Leishmaniasis represents a serious health problem worldwide and drug resistance is a growing concern. Leishmania parasites use unusual mechanisms to control their gene expression. In contrast to many other species, they do not have transcriptional regulation. The lack of transcriptional control is mainly compensated by post-transcriptional mechanisms, including tight translational control and regulation of mRNA stability/translatability by RNA-binding proteins. Modulation of translation plays a major role in parasite survival and adaptation to dramatically different environments during change of host; however, our knowledge of fine molecular mechanisms of translation in Leishmania remains limited. Here, we review the current progress in our understanding of how changes in the translational machinery promote parasite differentiation during transmission from a sand fly to a mammalian host, and discuss how translational reprogramming can contribute to the development of drug resistance.


Assuntos
Leishmania/fisiologia , Leishmaniose/parasitologia , Biossíntese de Proteínas , Proteínas de Protozoários/genética , Animais , Resistência a Medicamentos , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Humanos , Leishmania/efeitos dos fármacos , Leishmaniose/metabolismo , Estágios do Ciclo de Vida , Proteínas de Ligação a RNA/metabolismo
20.
Int J Mol Sci ; 21(7)2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268488

RESUMO

Secretory proteins are synthesized in a form of precursors with additional sequences at their N-terminal ends called signal peptides. The signal peptides are recognized co-translationally by signal recognition particle (SRP). This interaction leads to targeting to the endoplasmic reticulum (ER) membrane and translocation of the nascent chains into the ER lumen. It was demonstrated recently that in addition to a targeting function, SRP has a novel role in protection of secretory protein mRNAs from degradation. It was also found that the quality of secretory proteins is controlled by the recently discovered Regulation of Aberrant Protein Production (RAPP) pathway. RAPP monitors interactions of polypeptide nascent chains during their synthesis on the ribosomes and specifically degrades their mRNAs if these interactions are abolished due to mutations in the nascent chains or defects in the targeting factor. It was demonstrated that pathological RAPP activation is one of the molecular mechanisms of human diseases associated with defects in the secretory proteins. In this review, we discuss recent progress in understanding of translational control of secretory protein biogenesis on the ribosome and pathological consequences of its dysregulation in human diseases.


Assuntos
Suscetibilidade a Doenças , Regulação da Expressão Gênica , Homeostase , Biossíntese de Proteínas , Transporte Biológico , Humanos , Mutação , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...