Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Secur ; 15(1): 59-75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36186417

RESUMO

Resilience, defined as the ability of a system to adapt in the presence of a disruptive event, has been of great interest with food systems for some time now. The goal of this research was to build understanding about resilient food systems that will withstand and recover from disruptions in a way that ensures a sufficient supply of food for all. In large, developed countries such as the USA and Canada, the food supply chain relies on a complex web of interconnected systems, such as water and energy systems, and food production and distribution are still very labor-intensive. Thanks to economies of scale and effective use of limited resources, potential cost savings support a push towards a more centralized system. However, distributed systems tend to be more resilient. Although distributed production systems may not be economically justifiable than centralized ones, they may provide a more resilient alternative. This study focused on the supply-side aspects of the food system and the food system's water, energy, and workforce disruptions to be considered for the resilience assessment for the USA, with an example for the state of Texas. After the degree of centralization (DoC) was calculated, the resilience of a food system was measured. Next, the relationship between labor intensity and production of six major food groups was formulated. The example for Texas showed that the decentralization of food systems will improve their resilience in responding to energy and water disruptions. A 40 percent reduction in water supply could decrease the food system performance by 28%. A negative correlation was found between the resilience and DoC for energy disruption scenarios. A 40 percent reduction in energy supply could decrease the food system performance by 34%. In contrast, achieving a more resilient food system in responding to labor shortage supports a push towards a more centralized system the decentralization of food systems can in fact, improve their resilience in responding to disruptions in the energy and water inputs. In contrast, achieving a more resilient food system in responding to labor shortage supports a push towards a more centralized system. Supplementary Information: The online version contains supplementary material available at 10.1007/s12571-022-01321-9.

2.
Environ Syst Decis ; 41(1): 63-81, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33425649

RESUMO

Past research studies have acknowledged the role of resilience in policies and decisions to address disruptive events and proposed frameworks to measure it. The scope and diversity of these unwanted events highlight the need to evaluate the resilience of a system to a specific disruptive circumstance. The broad scope and generic form of the previous studies limit their usefulness as a practical tool for analyzing the factors affecting system performance. To overcome this problem, we are only focusing on the behavior of systems that produce, distribute, and deliver food, energy, and water (FEW) during and after the occurrence of a sudden shortage of labor. Resilience metrics are first developed to measure the resilience of the FEW systems. Next, the performance levels of the FEW systems are clearly defined based on the FEW demands that are not served. Third, the labor intensity of FEW productions is calculated to assess the impact of a sudden labor shortage. This study recognizes the complex interdependencies among the FEW systems and, thus, aims to examine their resilience as a single system. Last, the labor shortage in the USA caused by the COVID-19 pandemic is chosen as a use case to measure the system performance and role of adjustments on the FEW systems. The results show that a labor shortage can significantly impact the FEW system performance, possibly due to the high energy dependency of food and water systems and the high cost of storing energy. Also, the current food system has shown more resilience to a sudden labor shortage compared to the energy and water systems because of the availability of various food alternatives to meet the demand for each food category.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...