Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16703, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794118

RESUMO

In pregnant animals, communication between the mother and conceptus occurs via extracellular vesicles (EVs) that carry several biomolecules such as nucleic acids (miRNAs, mRNAs), proteins, and lipids. At the time of implantation, the endometrium undergoes several morphological and physiological changes, such as angiogenesis, apoptosis, and cell proliferation regulation at the implantation site, to attain a receptive state. This study was conducted to detect pregnancy-specific miRNAs derived from extracellular vesicles in the systemic circulation of Bubalus bubalis (water buffalo) and to assess their functional significance in the modulation of endometrial primary cells. The extracellular vesicles were isolated from the blood plasma using a precipitation-based method and further characterized by various methods such as Differential light scattering, Nanoparticle tracking assay, Western blot, and transmission electron microscopy. The relative expression of the selected extracellular vesicles associated miRNAs (EV-miRNA) at different intervals (days 15, 19, 25, and 30) post artificial insemination (AI) was analyzed using RT-qPCR, and expression of miR-195-5p was found to be significantly higher (P < 0.01) in pregnant animals on day 19 post AI (implantation window) as compared to day 15 post AI. The elevated expression might indicate the involvement of this miRNA in the maternal-conceptus cross-talk occurring during the implantation period. The KEGG pathway enrichment and Gene Ontology analyses of the miR-195-5p target genes revealed that these were mostly involved in the PI3-Akt, MAPK, cell cycle, ubiquitin-mediated proteolysis, and mTOR signaling pathways, which are related to the regulation of cell proliferation. Transfecting the in vitro cultured cells with miR-195-5p mimic significantly suppressed (P < 0.05) the expression of its target genes such as YWHAQ, CDC27, AKT-3, FGF-7, MAPK8, SGK1, VEGFA, CACAND1, CUL2, MKNK1, and CACAN2D1. Furthermore, the downregulation of the miR-195-5p target genes was positively correlated with a significant increase in the apoptotic rate and a decrease in the proliferation. In conclusion, the current findings provide vital information on the presence of EV miR-195-5p in maternal circulation during the implantation window indicating its important role in the modulation of buffalo endometrium epithelial cells via promoting cell death. Altogether, the milieu of miR-195-5p may serve as a novel and potential molecular factor facilitating the implantation of the early embryo during the establishment of pregnancy in buffaloes. Thus, miR-195-5p may be identified as a unique circulatory EV biomarker related to establishing pregnancy in buffaloes as early as day 19 post-AI.


Assuntos
Vesículas Extracelulares , MicroRNAs , Gravidez , Feminino , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Búfalos/genética , Búfalos/metabolismo , Cultura Primária de Células , MicroRNAs/genética , MicroRNAs/metabolismo , Endométrio/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Proliferação de Células/genética , Apoptose/genética
2.
Front Cell Dev Biol ; 11: 1119220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891514

RESUMO

The water buffalo (Bubalus bubalis) is an indispensable part of the Indian dairy sector and in several instances, the farmers incur economic losses due to failed pregnancy after artificial insemination (AI). One of the key factors for the failure of conception is the use of semen from the bulls of low fertilizing potential and hence, it becomes important to predict the fertility status before performing AI. In this study, the global proteomic profile of high fertile (HF) and low fertile (LF) buffalo bull spermatozoa was established using a high-throughput LC-MS/MS technique. A total of 1,385 proteins (≥1 high-quality PSM/s, ≥1 unique peptides, p < 0.05, FDR < 0.01) were identified out of which, 1,002 were common between both the HF and LF groups while 288 and 95 proteins were unique to HF and LF groups respectively. We observed 211 and 342 proteins were significantly high (log Fc ≥ 2) and low abundant (log Fc ≤ 0.5) in HF spermatozoa (p < 0.05). Gene ontology analysis revealed that the fertility associated high abundant proteins in HF were involved in spermatogenesis, sperm motility, acrosome integrity, zona pellucida binding and other associated sperm functions. Besides this, the low abundant proteins in HF were involved in glycolysis, fatty acid degradation and inflammation. Furthermore, fertility related differentially abundant proteins (DAPs) on sperm viz., AKAP3, Sp17, and DLD were validated through Western blotting and immunocytochemistry which was in coherence with the LC-MS/MS data. The DAPs identified in this study may be used as potential protein candidates for predicting fertility in buffaloes. Our findings provide an opportunity in mitigating the economic losses that farmers incur due to male infertility.

3.
BMC Genomics ; 22(1): 480, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174811

RESUMO

BACKGROUND: Low conception rate (CR) despite insemination with morphologically normal spermatozoa is a common reproductive restraint that limits buffalo productivity. This accounts for a significant loss to the farmers and the dairy industry, especially in agriculture-based economies. The immune-related proteins on the sperm surface are known to regulate fertility by assisting the spermatozoa in their survival and performance in the female reproductive tract (FRT). Regardless of their importance, very few studies have specifically catalogued the buffalo sperm surface proteome. The study was designed to determine the identity of sperm surface proteins and to ascertain if the epididymal expressed beta-defensins (BDs), implicated in male fertility, are translated and applied onto buffalo sperm surface along with other immune-related proteins. RESULTS: The raw mass spectra data searched against an in-house generated proteome database from UniProt using Comet search engine identified more than 300 proteins on the ejaculated buffalo sperm surface which were bound either by non-covalent (ionic) interactions or by a glycosylphosphatidylinositol (GPI) anchor. The singular enrichment analysis (SEA) revealed that most of these proteins were extracellular with varied binding activities and were involved in either immune or reproductive processes. Flow cytometry using six FITC-labelled lectins confirmed the prediction of glycosylation of these proteins. Several beta-defensins (BDs), the anti-microbial peptides including the BuBD-129 and 126 were also identified amongst other buffalo sperm surface proteins. The presence of these proteins was subsequently confirmed by RT-qPCR, immunofluorescence and in vitro fertilization (IVF) experiments. CONCLUSIONS: The surface of the buffalo spermatozoa is heavily glycosylated because of the epididymal secreted (glyco) proteins like BDs and the GPI-anchored proteins (GPI-APs). The glycosylation pattern of buffalo sperm-surface, however, could be perturbed in the presence of elevated salt concentration or incubation with PI-PLC. The identification of numerous BDs on the sperm surface strengthens our hypothesis that the buffalo BDs (BuBDs) assist the spermatozoa either in their survival or in performance in the FRT. Our results suggest that BuBD-129 is a sperm-surface BD that could have a role in buffalo sperm function. Further studies elucidating its exact physiological function are required to better understand its role in the regulation of male fertility.


Assuntos
Búfalos , Proteoma , Animais , Epididimo , Feminino , Imunidade Inata , Masculino , Reprodução , Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...