Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21710, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38066069

RESUMO

Cognitive neuroscience has gained insight into covert states using experience sampling. Traditionally, this approach has focused on off-task states. However, task-relevant states are also maintained via covert processes. Our study examined whether experience sampling can also provide insights into covert goal-relevant states that support task performance. To address this question, we developed a neural state space, using dimensions of brain function variation, that allows neural correlates of overt and covert states to be examined in a common analytic space. We use this to describe brain activity during task performance, its relation to covert states identified via experience sampling, and links between individual variation in overt and covert states and task performance. Our study established deliberate task focus was linked to faster target detection, and brain states underlying this experience-and target detection-were associated with activity patterns emphasizing the fronto-parietal network. In contrast, brain states underlying off-task experiences-and vigilance periods-were linked to activity patterns emphasizing the default mode network. Our study shows experience sampling can not only describe covert states that are unrelated to the task at hand, but can also be used to highlight the role fronto-parietal regions play in the maintenance of covert task-relevant states.


Assuntos
Avaliação Momentânea Ecológica , Objetivos , Encéfalo , Mapeamento Encefálico , Lobo Parietal , Imageamento por Ressonância Magnética
2.
Cereb Cortex ; 33(8): 4305-4318, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36066439

RESUMO

Auditory language comprehension recruits cortical regions that are both close to sensory-motor landmarks (supporting auditory and motor features) and far from these landmarks (supporting word meaning). We investigated whether the responsiveness of these regions in task-based functional MRI is related to individual differences in their physical distance to primary sensorimotor landmarks. Parcels in the auditory network, that were equally responsive across story and math tasks, showed stronger activation in individuals who had less distance between these parcels and transverse temporal sulcus, in line with the predictions of the "tethering hypothesis," which suggests that greater proximity to input regions might increase the fidelity of sensory processing. Conversely, language and default mode parcels, which were more active for the story task, showed positive correlations between individual differences in activation and sensory-motor distance from primary sensory-motor landmarks, consistent with the view that physical separation from sensory-motor inputs supports aspects of cognition that draw on semantic memory. These results demonstrate that distance from sensorimotor regions provides an organizing principle of functional differentiation within the cortex. The relationship between activation and geodesic distance to sensory-motor landmarks is in opposite directions for cortical regions that are proximal to the heteromodal (DMN and language network) and unimodal ends of the principal gradient of intrinsic connectivity.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Distanciamento Físico , Imageamento por Ressonância Magnética/métodos , Idioma
3.
Cortex ; 150: 48-60, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339787

RESUMO

Semantic cognition allows us to make sense of our varied experiences, including the words we hear and the objects we see. Contemporary accounts identify multiple interacting components that underpin semantic cognition, including diverse unimodal "spoke" systems that are integrated by a heteromodal "hub", and control processes that allow us to access weakly-encoded as well as dominant aspects of knowledge to suit the circumstances. The current study examined how these dimensions of semantic cognition might be related to whole-brain-derived components (or gradients) of connectivity. A nonlinear dimensionality reduction technique was applied to resting-state functional magnetic resonance imaging from 176 participants to characterise the strength of two key connectivity gradients in each individual: the principal gradient captured the separation between unimodal and heteromodal cortex, while the second gradient corresponded to the distinction between motor and visual cortex. We then examined whether the magnitude of these gradients within the semantic network was related to specific aspects of semantic cognition by examining individual differences in semantic and non-semantic tasks. Participants whose intrinsic connectivity showed a better fit with Gradient 1 had faster identification of weak semantic associations. Furthermore, a better fit with Gradient 2 was linked to faster performance on picture semantic judgements. These findings show that individual differences in aspects of semantic cognition can be related to components of connectivity within the semantic network.


Assuntos
Individualidade , Semântica , Mapeamento Encefálico/métodos , Cognição , Humanos , Imageamento por Ressonância Magnética/métodos , Web Semântica
4.
Conscious Cogn ; 93: 103139, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34111726

RESUMO

Previous research suggests that patterns of ongoing thought are heterogeneous, varying across situations and individuals. The current study investigated the influence of multiple tasks and affective style on ongoing patterns of thought. We used 9 different tasks and measured ongoing thought using multidimensional experience sampling. A Principal Component Analysis of the experience sampling data revealed four patterns of ongoing thought: episodic social cognition, unpleasant intrusive, concentration and self focus. Linear Mixed Modelling was used to conduct a series of exploratory analyses aimed at examining contextual distributions of these thought patterns. We found that different task contexts reliably evoke different thought patterns. Moreover, intrusive and negative thought pattern expression were influenced by individual affective style (depression level). The data establish the influence of task context and intrinsic features on ongoing thought, highlighting the importance of documenting how thought patterns emerge in cognitive tasks with different requirements.


Assuntos
Atenção , Pensamento , Avaliação Momentânea Ecológica , Humanos , Estudos Longitudinais , Análise de Componente Principal
5.
iScience ; 24(3): 102132, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33665553

RESUMO

A core goal in cognitive neuroscience is identifying the physical substrates of the patterns of thought that occupy our daily lives. Contemporary views suggest that the landscape of ongoing experience is heterogeneous and can be influenced by features of both the person and the context. This perspective piece considers recent work that explicitly accounts for both the heterogeneity of the experience and context dependence of patterns of ongoing thought. These studies reveal that systems linked to attention and control are important for organizing experience in response to changing environmental demands. These studies also establish a role of the default mode network beyond task-negative or purely episodic content, for example, implicating it in the level of vivid detail in experience in both task contexts and in spontaneous self-generated experiential states. Together, this work demonstrates that the landscape of ongoing thought is reflected in the activity of multiple neural systems, and it is important to distinguish between processes contributing to how the experience unfolds from those linked to how these experiences are regulated.

6.
Philos Trans R Soc Lond B Biol Sci ; 376(1817): 20190691, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33308072

RESUMO

Cognition is not always directed to the events in the here and now and we often self-generate thoughts and images in imagination. Important aspects of these self-generated experiences are associated with various dispositional traits. In this study, we explored whether these psychological associations relate to a common underlying neurocognitive mechanism. We acquired resting state functional magnetic resonance imaging data from a large cohort of participants and asked them to retrospectively report their experience during the scan. Participants also completed questionnaires reflecting a range of dispositional traits. We found thoughts emphasizing visual imagery at rest were associated with dispositional tendency towards internally directed attention (self-consciousness and attentional problems) and linked to a stronger correlation between a posterior parietal network and a lateral fronto-temporal network. Furthermore, decoupling between the brainstem and a lateral visual network was associated with dispositional internally directed attention. Critically, these brain-cognition associations were related: the correlation between parietal-frontal regions and reports of visual imagery was stronger for individuals with increased connectivity between brainstem and visual cortex. Our results highlight neural mechanisms linked to the dispositional basis for patterns of self-generated thought, and suggest that accounting for dispositional traits is important when exploring the neural substrates of self-generated experience (and vice versa). This article is part of the theme issue 'Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation'.


Assuntos
Atenção , Cognição , Emoções , Imaginação , Personalidade , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estudos Retrospectivos , Adulto Jovem
7.
Sci Rep ; 10(1): 21121, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273566

RESUMO

When unoccupied by an explicit external task, humans engage in a wide range of different types of self-generated thinking. These are often unrelated to the immediate environment and have unique psychological features. Although contemporary perspectives on ongoing thought recognise the heterogeneity of these self-generated states, we lack both a clear understanding of how to classify the specific states, and how they can be mapped empirically. In the current study, we capitalise on advances in machine learning that allow continuous neural data to be divided into a set of distinct temporally re-occurring patterns, or states. We applied this technique to a large set of resting state data in which we also acquired retrospective descriptions of the participants' experiences during the scan. We found that two of the identified states were predictive of patterns of thinking at rest. One state highlighted a pattern of neural activity commonly seen during demanding tasks, and the time individuals spent in this state was associated with descriptions of experience focused on problem solving in the future. A second state was associated with patterns of activity that are commonly seen under less demanding conditions, and the time spent in it was linked to reports of intrusive thoughts about the past. Finally, we found that these two neural states tended to fall at either end of a neural hierarchy that is thought to reflect the brain's response to cognitive demands. Together, these results demonstrate that approaches which take advantage of time-varying changes in neural function can play an important role in understanding the repertoire of self-generated states. Moreover, they establish that important features of self-generated ongoing experience are related to variation along a similar vein to those seen when the brain responds to cognitive task demands.


Assuntos
Descanso , Vigília , Adulto , Cognição , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Cadeias de Markov , Estudos Retrospectivos
8.
Neurosci Conscious ; 2020(1): niaa020, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042581

RESUMO

Conscious awareness of the world fluctuates, either through variation in how vividly we perceive the environment, or when our attentional focus shifts away from information in the external environment towards information that we generate via imagination. Our study combined individual differences in experience sampling, psychophysical reports of perception and neuroimaging descriptions of structural connectivity to better understand these changes in conscious awareness. In particular, we examined (i) whether aspects of ongoing thought-indexed via multi-dimensional experience sampling during a sustained attention task-are associated with the white matter fibre organization of the cortex as reflected by their relative degree of anisotropic diffusion and (ii) whether these neurocognitive descriptions of ongoing experience are related to a more constrained measure of visual consciousness through analysis of bistable perception during binocular rivalry. Individuals with greater fractional anisotropy in right hemisphere white matter regions involving the inferior fronto-occipital fasciculus, the superior longitudinal fasciculus and the cortico-spinal tract, described their ongoing thoughts as lacking external details. Subsequent analysis indicated that the combination of low fractional anisotropy in these right hemisphere regions, with reports of thoughts with high levels of external details, was associated with the shortest periods of dominance during binocular rivalry. Since variation in binocular rivalry reflects differences between bottom-up and top-down influences on vision, our study suggests that reports of ongoing thoughts with vivid external details may occur when conscious precedence is given to bottom-up representation of perceptual information.

9.
Netw Neurosci ; 4(3): 637-657, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32885119

RESUMO

Ongoing thought patterns constitute important aspects of both healthy and abnormal human cognition. However, the neural mechanisms behind these daily experiences and their contribution to well-being remain a matter of debate. Here, using resting-state fMRI and retrospective thought sampling in a large neurotypical cohort (n = 211), we identified two distinct patterns of thought, broadly describing the participants' current concerns and future plans, that significantly explained variability in the individual functional connectomes. Consistent with the view that ongoing thoughts are an emergent property of multiple neural systems, network-based analysis highlighted the central importance of both unimodal and transmodal cortices in the generation of these experiences. Importantly, while state-dependent current concerns predicted better psychological health, mediating the effect of functional connectomes, trait-level future plans were related to better social health, yet with no mediatory influence. Collectively, we show that ongoing thoughts can influence the link between brain physiology and well-being.

11.
Neuroimage ; 220: 117072, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32585346

RESUMO

Contemporary accounts of ongoing thought recognise it as a heterogeneous and multidimensional construct, varying in both form and content. An emerging body of evidence demonstrates that distinct types of experience are associated with unique neurocognitive profiles, that can be described at the whole-brain level as interactions between multiple large-scale networks. The current study sought to explore the possibility that whole-brain functional connectivity patterns at rest may be meaningfully related to patterns of ongoing thought that occurred over this period. Participants underwent resting-state functional magnetic resonance imaging (rs-fMRI) followed by a questionnaire retrospectively assessing the content and form of their ongoing thoughts during the scan. A non-linear dimension reduction algorithm was applied to the rs-fMRI data to identify components explaining the greatest variance in whole-brain connectivity patterns. Using these data, we examined whether specific types of thought measured at the end of the scan were predictive of individual variation along the first three low-dimensional components of functional connectivity at rest. Multivariate analyses revealed that individuals for whom the connectivity of the sensorimotor system was maximally distinct from the visual system were most likely to report thoughts related to finding solutions to problems or goals and least likely to report thoughts related to the past. These results add to an emerging literature that suggests that unique patterns of experience are associated with distinct distributed neurocognitive profiles and highlight that unimodal systems may play an important role in this process.


Assuntos
Encéfalo/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Individualidade , Rede Nervosa/diagnóstico por imagem , Pensamento/fisiologia , Adolescente , Encéfalo/fisiologia , Rede de Modo Padrão/fisiologia , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/fisiologia , Adulto Jovem
12.
Sci Rep ; 10(1): 9912, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555212

RESUMO

Cognition is dynamic and involves both the maintenance of and transitions between neurocognitive states. While recent research has identified some of the neural systems involved in sustaining task states, it is less well understood how intrinsic influences on cognition emerge over time. The current study uses fMRI and Multi-Dimensional Experience Sampling (MDES) to chart how cognition changes over time from moments in time when external attention was established. We found that the passage of time was associated with brain regions associated with external attention decreasing in activity over time. Comparing this pattern of activity to defined functional hierarchies of brain organization, we found that it could be best understood as movement away from systems involved in task performance. Moments where the participants described their thoughts as off-task showed a significant similarity to the task-negative end of the same hierarchy. Finally, the greater the similarity of a participant's neural dynamics to this hierarchy the faster their rate of increasing off-task thought over time. These findings suggest topographical changes in neural processing that emerge over time and those seen during off-task thought can both be understood as a common shift away from neural motifs seen during complex task performance.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Cognição/fisiologia , Vias Neurais/fisiologia , Análise e Desempenho de Tarefas , Pensamento/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
13.
Neuroimage ; 218: 116977, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32450251

RESUMO

The human mind is equally fluent in thoughts that involve self-generated mental content as it is with information in the immediate environment. Previous research has shown that neural systems linked to executive control (i.e. the dorsolateral prefrontal cortex) are recruited when perceptual and self-generated thoughts are balanced in line with the demands imposed by the external world. Contemporary theories (Smallwood and Schooler, 2015) assume that differentiable processes are important for self-generated mental content than for its regulation. The current study used functional magnetic resonance imaging in combination with multidimensional experience sampling to address this possibility. We used a task with minimal demands to maximise our power at identifying correlates of self-generated states. Principal component analysis showed consistent patterns of self-generated thought when participants performed the task in either the lab or in the scanner (ICC ranged from 0.68 to 0.86). In a whole brain analyses we found that neural activity in the ventromedial prefrontal cortex (vMPFC) increases when participants are engaged in experiences which emphasise episodic and socio-cognitive features. Our study suggests that neural activity in the vMPFC is linked to patterns of ongoing thought, particularly those with episodic or social features.


Assuntos
Córtex Pré-Frontal/fisiologia , Cognição Social , Adolescente , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
14.
Neuroimage ; 202: 116089, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31419614

RESUMO

The semantic network is thought to include multiple components, including heteromodal conceptual representations and semantic control processes that shape retrieval to suit the circumstances. Much of this network is strongly left-lateralised; however, work to date has not considered whether separable components of semantic cognition have different degrees of lateralisation. This study examined intrinsic connectivity of four regions implicated in heteromodal semantic cognition, identified using large scale meta-analyses: two sites which have been argued to act as heteromodal semantic hubs in anterior temporal lobe (ATL) and angular gyrus (AG); and two sites implicated in semantic control in inferior frontal (IFG) and posterior middle temporal gyri (pMTG). We compared the intrinsic connectivity of these sites in left hemisphere (LH) and right hemisphere (RH), and linked individual differences in the strength of within- and between-hemisphere connectivity from left-lateralised seeds to performance on semantic tasks, in a sample of 196 healthy volunteers. ATL showed more symmetrical patterns of intrinsic connectivity than the other three sites. The connectivity between IFG and pMTG was stronger in the LH than the RH, suggesting that the semantic control network is strongly left-lateralised. The degree of hemispheric lateralisation also predicted behaviour: participants with stronger intrinsic connectivity within the LH had better semantic performance, while those with stronger intrinsic connectivity between left pMTG and homotopes of semantic regions in the RH performed more poorly on judgements of weak associations, which require greater control. Stronger connectivity between left AG and visual cortex was also linked to poorer perceptual performance. Overall, our results show that hemispheric lateralisation is particularly important for the semantic control network, and that this lateralisation has contrasting functional consequences for the retrieval of dominant and subordinate aspects of knowledge.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Lateralidade Funcional/fisiologia , Vias Neurais/fisiologia , Semântica , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
15.
J Neurophysiol ; 121(4): 1150-1161, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30699059

RESUMO

Rhythmic activity in populations of neurons is associated with cognitive and motor function. Our understanding of the neuronal mechanisms underlying these core brain functions has benefitted from demonstrations of cellular, synaptic, and network phenomena, leading to the generation of discrete rhythms at the local network level. However, discrete frequencies of rhythmic activity rarely occur alone. Despite this, little is known about why multiple rhythms are generated together or what mechanisms underlie their interaction to promote brain function. One overarching theory is that different temporal scales of rhythmic activity correspond to communication between brain regions separated by different spatial scales. To test this, we quantified the cross-frequency interactions between two dominant rhythms-theta and delta activity-manifested during magnetoencephalography recordings of subjects performing a word-pair semantic decision task. Semantic processing has been suggested to involve the formation of functional links between anatomically disparate neuronal populations over a range of spatial scales, and a distributed network was manifest in the profile of theta-delta coupling seen. Furthermore, differences in the pattern of theta-delta coupling significantly correlated with semantic outcome. Using an established experimental model of concurrent delta and theta rhythms in neocortex, we show that these outcome-dependent dynamics could be reproduced in a manner determined by the strength of cholinergic neuromodulation. Theta-delta coupling correlated with discrete neuronal activity motifs segregated by the cortical layer, neuronal intrinsic properties, and long-range axonal targets. Thus, the model suggested that local, interlaminar neocortical theta-delta coupling may serve to coordinate both cortico-cortical and cortico-subcortical computations during distributed network activity. NEW & NOTEWORTHY Here, we show, for the first time, that a network of spatially distributed brain regions can be revealed by cross-frequency coupling between delta and theta frequencies in subjects using magnetoencephalography recording during a semantic decision task. A biological model of this cross-frequency coupling suggested an interlaminar, cell-specific division of labor within the neocortex may serve to route the flow of cortico-cortical and cortico-subcortical information to promote such spatially distributed, functional networks.


Assuntos
Cognição , Ritmo Delta , Neocórtex/fisiologia , Semântica , Ritmo Teta , Adulto , Tomada de Decisões , Feminino , Humanos , Masculino
16.
Hum Brain Mapp ; 40(4): 1234-1243, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30357995

RESUMO

Spatial or temporal aspects of neural organization are known to be important indices of how cognition is organized. However, measurements and estimations are often noisy and many of the algorithms used are probabilistic, which in combination have been argued to limit studies exploring the neural basis of specific aspects of cognition. Focusing on static and dynamic functional connectivity estimations, we propose to leverage this variability to improve statistical efficiency in relating these estimations to behavior. To achieve this goal, we use a procedure based on permutation testing that provides a way of combining the results from many individual tests that refer to the same hypothesis. This is needed when testing a measure whose value is obtained from a noisy process, which can be repeated multiple times, referred to as replications. Focusing on functional connectivity, this noisy process can be: (a) computational, for example, when using an approximate inference algorithm for which different runs can produce different results or (b) observational, if we have the capacity to acquire data multiple times, and the different acquired data sets can be considered noisy examples of some underlying truth. In both cases, we are not interested in the individual replications but on the unobserved process generating each replication. In this note, we show how results can be combined instead of choosing just one of the estimated models. Using both simulations and real data, we show the benefits of this approach in practice.


Assuntos
Algoritmos , Encéfalo/fisiologia , Cognição/fisiologia , Conectoma/métodos , Vias Neurais/fisiologia , Simulação por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos
17.
Proc Natl Acad Sci U S A ; 115(37): 9318-9323, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150393

RESUMO

Regions of transmodal cortex, in particular the default mode network (DMN), have historically been argued to serve functions unrelated to task performance, in part because of associations with naturally occurring periods of off-task thought. In contrast, contemporary views of the DMN suggest it plays an integrative role in cognition that emerges from its location at the top of a cortical hierarchy and its relative isolation from systems directly involved in perception and action. The combination of these topographical features may allow the DMN to support abstract representations derived from lower levels in the hierarchy and so reflect the broader cognitive landscape. To investigate these contrasting views of DMN function, we sampled experience as participants performed tasks varying in their working-memory load while inside an fMRI scanner. We used self-report data to establish dimensions of thought that describe levels of detail, the relationship to a task, the modality of thought, and its emotional qualities. We used representational similarity analysis to examine correspondences between patterns of neural activity and each dimension of thought. Our results were inconsistent with a task-negative view of DMN function. Distinctions between on- and off-task thought were associated with patterns of consistent neural activity in regions adjacent to unimodal cortex, including motor and premotor cortex. Detail in ongoing thought was associated with patterns of activity within the DMN during periods of working-memory maintenance. These results demonstrate a contribution of the DMN to ongoing cognition extending beyond task-unrelated processing that can include detailed experiences occurring under active task conditions.


Assuntos
Cognição/fisiologia , Emoções/fisiologia , Memória de Curto Prazo/fisiologia , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino
18.
Neuroimage ; 181: 480-489, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30030197

RESUMO

Semantic control allows us to shape our conceptual retrieval to suit the circumstances in a flexible way. Tasks requiring semantic control activate a large-scale network including left inferior prefrontal gyrus (IFG) and posterior middle temporal gyrus (pMTG) - this network responds when retrieval is focussed on weak as opposed to dominant associations. However, little is known about the biological basis of individual differences in this cognitive capacity: regions that are commonly activated in task-based fMRI may not relate to variation in controlled retrieval. The current study combined analyses of MRI-based cortical thickness with resting-state fMRI connectivity to identify structural markers of individual differences in semantic control. We found that participants who performed relatively well on tests of controlled semantic retrieval showed increased structural covariance between left pMTG and left anterior middle frontal gyrus (aMFG). This pattern of structural covariance was specific to semantic control and did not predict performance when harder non-semantic judgements were contrasted with easier semantic judgements. The intrinsic functional connectivity of these two regions forming a structural covariance network overlapped with previously-described semantic control regions, including bilateral IFG and intraparietal sulcus, and left posterior temporal cortex. These results add to our knowledge of the neural basis of semantic control in three ways: (i) Semantic control performance was predicted by the structural covariance network of left pMTG, a site that is less consistently activated than left IFG across studies. (ii) Our results provide further evidence that semantic control is at least partially separable from domain-general executive control. (iii) More flexible patterns of memory retrieval occurred when pMTG co-varied with distant regions in aMFG, as opposed to nearby visual, temporal or parietal lobe regions, providing further evidence that left prefrontal and posterior temporal areas form a distributed network for semantic control.


Assuntos
Associação , Conectoma/métodos , Individualidade , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal , Psicolinguística , Semântica , Lobo Temporal , Adolescente , Adulto , Feminino , Humanos , Masculino , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Lobo Temporal/anatomia & histologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Adulto Jovem
19.
Exp Brain Res ; 236(9): 2469-2481, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27443852

RESUMO

Human cognition is not limited to the available environmental input but can consider realities that are different to the here and now. We describe the cognitive states and neural processes linked to the refinement of descriptions of personal goals. When personal goals became concrete, participants reported greater thoughts about the self and the future during mind-wandering. This pattern was not observed for descriptions of TV programmes. Connectivity analysis of participants who underwent a resting-state functional magnetic resonance imaging scan revealed neural traits associated with this pattern. Strong hippocampal connectivity with ventromedial pre-frontal cortex was common to better-specified descriptions of goals and TV programmes, while connectivity between hippocampus and the pre-supplementary motor area was associated with individuals whose goals were initially abstract but became more concrete over the course of the experiment. We conclude that self-generated cognition that arises during the mind-wandering state can allow goals to be refined, and this depends on neural systems anchored in the hippocampus.


Assuntos
Atenção/fisiologia , Conectoma/métodos , Tomada de Decisões/fisiologia , Objetivos , Hipocampo/fisiologia , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Pensamento/fisiologia , Adulto , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Adulto Jovem
20.
Epilepsy Behav ; 78: 155-160, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29245083

RESUMO

The Wada test remains the traditional test for lateralizing language and memory function prior to epilepsy surgery. Functional imaging, particularly functional MRI (fMRI), has made progress in the language domain, but less so in the memory domain. Magnetoencephalography (MEG) has received less research attention, but shows promise, particularly for language lateralization. We recruited a consecutive sample of 19 patients with epilepsy who had completed presurgical work-up, including the Wada test, and compared fMRI (memory) and MEG (language and memory) with Wada test results. The main research question was the concordance between Wada and these two imaging techniques as preepilepsy surgery investigations. We were also interested in the acceptability of the three techniques to patients. Concordance rates (N=16) were nonsignificant (Cohen's Kappa) between fMRI and Wada test (memory) and between MEG and Wada test (memory and language). The Wada test was a well-established protocol used at several epilepsy surgery centers in the UK. Patients generally found the Wada test an odd, but not aversive procedure. Sixteen (84%) patients who were scanned reported some level of obtundation in MEG. We present these discordant findings in support of the position that functional imaging and the Wada test are distinctive procedures, with little in the way of overlapping mechanisms, and that patient's experience should be taken into account when procedures are selected and offered to them.


Assuntos
Mapeamento Encefálico/métodos , Epilepsia/diagnóstico , Lateralidade Funcional/fisiologia , Idioma , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Neuroimagem , Adulto , Epilepsia/fisiopatologia , Feminino , Humanos , Testes de Linguagem , Masculino , Memória , Pessoa de Meia-Idade , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...