Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1974, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263390

RESUMO

A string of fierce fires broke out in Chile in the austral summer 2023, just six years after the record-breaking 2017 fire season. Favored by extreme weather conditions, fire activity has dramatically risen in recent years in this Andean country. A total of 1.7 million ha. burned during the last decade, tripling figures of the prior decade. Six of the seven most destructive fire seasons on record occurred since 2014. Here, we analyze the progression during the last two decades of the weather conditions associated with increased fire risk in Central Chile (30°-39° S). Fire weather conditions (including high temperatures, low humidity, dryness, and strong winds) increase the potential for wildfires, once ignited, to rapidly spread. We show that the concurrence of El Niño and climate-fueled droughts and heatwaves boost the local fire risk and have decisively contributed to the intense fire activity recently seen in Central Chile. Our results also suggest that the tropical eastern Pacific Ocean variability modulates the seasonal fire weather in the country, driving in turn the interannual fire activity. The signature of the warm anomalies in the Niño 1 + 2 region (0°-10° S, 90° W-80° W) is apparent on the burned area records seen in Central Chile in 2017 and 2023.

2.
Environ Geochem Health ; 44(10): 3173-3189, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34628550

RESUMO

The importance of environmental geochemistry baseline in soils of O´Higgins Region, Chile, since it hosts in its eastern area one of the major Cu-Mo producing mines in the country, is to establish and explain relationships between the chemical compositions of the Earth's surface and potential contaminants sources such as mining industry, agriculture and urban activity. A total of 109 samples of urban, peri-urban and rural soils were analyzed with X-ray fluorescence to determine most of the elemental concentrations analyzed. The C and S analyses were performed with the high-temperature combustion method, and a MERCUR mercury analyzer was used for Hg. The study shows that the distribution patterns for most major elements and some trace elements are controlled by the lithologic substrate. This study identified areas with metals and metalloids in high concentrations, which are a risk to the environment and health according to established international regulations. Some of these components correspond to Cu (2500 ppm), Mo (26,5 ppm), As (134,6 ppm), Cr (206.6 ppm), Hg (0.2 ppm), Ni (26.4 ppm), Pb (61.7 ppm), V (227,2 ppm) and Zn (180.3 ppm). Through an elementary association analysis, most of these elements resulted from extractive activities of Cu, metal alloys and oil combustion. It was also possible to trace the use of fertilizers and pesticides in agricultural soils, as well as the combustion of oil related to vehicles in the study area. This information is relevant to implement environmental management strategies to control possible exposure to toxic compounds to human health.


Assuntos
Mercúrio , Metaloides , Metais Pesados , Praguicidas , Poluentes do Solo , Oligoelementos , Ligas/análise , Chile , China , Monitoramento Ambiental/métodos , Fertilizantes/análise , Humanos , Chumbo/análise , Mercúrio/análise , Metaloides/análise , Metais Pesados/análise , Praguicidas/análise , Medição de Risco , Solo/química , Poluentes do Solo/análise , Oligoelementos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA