Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Yakugaku Zasshi ; 143(7): 607-616, 2023 Jul 01.
Artigo em Japonês | MEDLINE | ID: mdl-37225498

RESUMO

In today's world, where clinical options are ever increasing and patients' needs are more diverse, it is not possible to conclude that simply practicing medical care based on pathophysiological data and medical evidence is sufficient for patients, particularly in terms of seeing each patient as an individual. Medical professionals must maintain a close relationship with their patients and seek treatment and care methods that reflect the patient's values and views on life and death, based on their own ethics in medical care. Ethics education should be provided on a continuing basis from the beginning of medical/pharmacy school. However, ethics education in pharmacy departments is often delivered in a lecture format attended by many students and/or as group training using case studies and hypothetical situations, i.e., "paper" patients. With these teaching methods, there are limited opportunities for the students to foster a sense of ethics or to think deeply about their values and views on life and death with respect to the patients they care for. Therefore, in this study, we conducted ethics exercises for pharmacy students in a group study format using a documentary film of real patients who were facing death. By retrospectively analyzing the results of the questionnaires collected before and after the assignments and exercises, we verified the educational effects and changes in the students' sense of ethics from participating in the group learning exercise; moreover, our results revealed the insight gained by the students in examining the experiences and challenges faced by terminally ill patients.


Assuntos
Estudantes de Medicina , Estudantes de Farmácia , Humanos , Estudos Retrospectivos , Escolaridade , Aprendizagem , Currículo , Ética Médica
2.
Biol Pharm Bull ; 46(2): 257-262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724953

RESUMO

Platelet-activating factor acetylhydrolase (PAF-AH) hydrolyzes an acetyl ester at the sn-2 position of platelet-activating factor (PAF), thereby mediating a variety of biological functions. PAF-AH is found in three isoforms: Type I PAF-AH (PAF-AH I) and Type II PAF-AH (PAF-AH II) are intracellular enzymes whereas plasma PAF-AH is characterized by association with lipoprotein in plasma. PAF-AH I forms a tetramer constituted by two catalytic subunits (α1 and α2) with ß regulatory subunits. We recently showed that a deficiency of PAF-AH I catalytic subunits in male mice caused an increase of body weight, food intake, and white adipose tissue (WAT) weight. In this study, we examined whether the expression of this enzyme was altered in the differentiation of 3T3-L1 preadipocytes into adipocytes. The amount of PAF-AH I α1 subunit protein was significantly reduced in 3T3-L1 differentiation, while the amount of the PAF-AH I α2 subunit was not changed. Immunoprecipitation analysis of 3T3-L1 differentiation showed that the complex of PAF-AH I catalytic subunits was changed from α1/α2 heterodimer to α2/α2 homodimer. Our findings suggest that changes in PAF-AH I catalytic subunits are involved in adipocyte differentiation of 3T3-L1 and obesity in mice.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Fosfolipases A , Masculino , Camundongos , Animais , Fosfolipases A/metabolismo , Células 3T3-L1 , Domínio Catalítico , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Fator de Ativação de Plaquetas/metabolismo , Diferenciação Celular
3.
Endocr J ; 69(10): 1261-1269, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35675983

RESUMO

Sulfonation is an important step in the metabolism of dopamine, estrogens, dehydroepiandrosterone, as well as thyroid hormones. However, the regulation of cytosolic sulfotransferases in the thyroid is not well understood. In a DNA microarray analysis of rat thyroid FRTL-5 cells, we found that the mRNA expression of 10 of 48 sulfotransferases was significantly altered by thyroid stimulating hormone (TSH), with that of sulfotransferase family 1A member 1 (SULT1A1) being the most significantly affected. Real-time PCR and Western blot analyses revealed that TSH, forskolin and dibutyryl cyclic AMP significantly suppressed SULT1A1 mRNA and protein levels in a time- and concentration-dependent manner. Moreover, immunofluorescence staining of FRTL-5 cells showed that SULT1A1 is localized in the perinuclear area in the absence of TSH but is spread throughout the cytoplasm with reduced fluorescence intensity in the presence of TSH. Sulfotransferase activity in FRTL-5 cells, measured using 3'-phosphoadenosine-5'-phosphosulfate as a donner and p-nitrophenol as an acceptor substrate, was significantly reduced by TSH. These findings suggest that the expression and activity of SULT1A1 are modulated by TSH in thyrocytes.


Assuntos
Células Epiteliais da Tireoide , Tireotropina , Ratos , Animais , Tireotropina/farmacologia , Tireotropina/metabolismo , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , RNA Mensageiro/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-35462067

RESUMO

Breast cancer is primarily classified into ductal and lobular types, as well as into noninvasive and invasive cancer. Invasive cancer involves lymphatic and hematogenous metastasis. In breast cancer patients with distant metastases, a neutrophil-derived serine protease; cathepsin G (Cat G), is highly expressed in breast cancer cells. Cat G induces cell migration and multicellular aggregation of MCF-7 human breast cancer cells; however, the mechanism is not clear. Recently, platelet-activating factor (PAF)-acetylhydrolase (PAF-AH), the enzyme responsible for PAF degradation, was reported to be overexpressed in some tumor types, including pancreatic and breast cancers. In this study, we investigated whether PAF-AH is involved in Cat G-induced aggregation and migration of MCF-7 cells. We first showed that Cat G increased PAF-AH activity and elevated PAFAH1B2 expression in MCF-7 cells. The elevated expression of PAFAH1B2 was also observed in human breast cancer tissue specimens by immunohistochemical analysis. Furthermore, knockdown of PAFAH1B2 in MCF-7 cells suppressed the cell migration and aggregation induced by low concentrations, but not high concentrations, of Cat G. Carbamoyl PAF (cPAF), a nonhydrolyzable PAF analog, completely suppressed Cat G-induced migration of MCF-7 cells. In addition, PAF receptor (PAFR) inhibition induced cell migration of MCF-7 cells even in the absence of Cat G, suggesting that Cat G suppresses the activation of PAFR through enhanced PAF degradation due to elevated expression of PAFAH1B2 and thereby induces malignant phenotypes in MCF-7 cells. Our findings may lead to a novel therapeutic modality for treating breast cancer by modulating the activity of Cat G/PAF signaling.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Neoplasias da Mama , Catepsina G , Proteínas Associadas aos Microtúbulos , Fator de Ativação de Plaquetas , 1-Alquil-2-acetilglicerofosfocolina Esterase/biossíntese , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular , Feminino , Humanos , Células MCF-7 , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Neutrófilos/metabolismo , Neutrófilos/patologia , Fator de Ativação de Plaquetas/metabolismo
5.
Biol Pharm Bull ; 44(7): 920-925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34193688

RESUMO

Type I platelet-activating factor-acetylhydrolase (PAF-AH) forms a complex consisting of two catalytic subunits (α1 and/or α2) with a regulatory subunit (ß). Although this protein was discovered as an enzyme that degrades an acetyl ester linked at the sn-2 position of platelet-activating factor (PAF), its physiological function remains unknown. In this study, to examine whether knockout mice lacking the catalytic subunits of this enzyme showed a different phenotype from that of wild-type mice, we measured and compared the body weights of knockout mice and control mice. The body weights of knockout mice were significantly increased compared to those of the control mice during 6 to 20 weeks from birth. Food intake was also significantly increased in knockout mice compared with control mice during these periods. Since a decrease in testis weight was reported in the knockout mice, we expected a decrease in testosterone levels. We measured and compared the amounts of testosterone in the serum and testis of knockout and control mice using liquid chromatography-tandem mass spectrometry, and found that testosterone levels in both the serum and testis were significantly decreased in the knockout mice compared with the control mice. These results suggest that a deficiency of type I PAF-AH catalytic subunits causes an increase in body weight, in part, due to reduced testosterone levels in male mice.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/deficiência , Peso Corporal , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Tecido Adiposo Branco , Animais , Domínio Catalítico , Fígado , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão , Testículo/anatomia & histologia , Testículo/metabolismo , Testosterona/sangue , Testosterona/metabolismo
6.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299217

RESUMO

The mycobacterial cell wall is composed of large amounts of lipids with varying moieties. Some mycobacteria species hijack host cells and promote lipid droplet accumulation to build the cellular environment essential for their intracellular survival. Thus, lipids are thought to be important for mycobacteria survival as well as for the invasion, parasitization, and proliferation within host cells. However, their physiological roles have not been fully elucidated. Recent studies have revealed that mycobacteria modulate the peroxisome proliferator-activated receptor (PPAR) signaling and utilize host-derived triacylglycerol (TAG) and cholesterol as both nutrient sources and evasion from the host immune system. In this review, we discuss recent findings that describe the activation of PPARs by mycobacterial infections and their role in determining the fate of bacilli by inducing lipid metabolism, anti-inflammatory function, and autophagy.


Assuntos
Infecções por Mycobacterium/microbiologia , Mycobacterium/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Animais , Autofagia/fisiologia , Colesterol/metabolismo , Humanos , Metabolismo dos Lipídeos , Mycobacterium/crescimento & desenvolvimento , Mycobacterium/imunologia , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Transdução de Sinais
7.
PLoS One ; 16(3): e0249184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33770127

RESUMO

Mycobacterium leprae (M. leprae) is the etiological agent of leprosy, and the skin lesions of lepromatous leprosy are filled with numerous foamy or xanthomatous histiocytes that are parasitized by M. leprae. Lipids are an important nutrient for the intracellular survival of M. leprae. In this study, we attempted to determine the intracellular lipid composition and underlying mechanisms for changes in host cell lipid metabolism induced by M. leprae infection. Using high-performance thin-layer chromatography (HPTLC), we demonstrated specific induction of triacylglycerol (TAG) production in human macrophage THP-1 cells following M. leprae infection. We then used [14C] stearic acid tracing to show incorporation of this newly synthesized host cell TAG into M. leprae. In parallel with TAG accumulation, expression of host glycerol-3-phosphate acyltransferase 3 (GPAT3), a key enzyme in de novo TAG synthesis, was significantly increased in M. leprae-infected cells. CRISPR/Cas9 genome editing of GPAT3 in THP-1 cells (GPAT3 KO) dramatically reduced accumulation of TAG following M. leprae infection, intracellular mycobacterial load, and bacteria viability. These results together suggest that M. leprae induces host GPAT3 expression to facilitate TAG accumulation within macrophages to maintain a suitable environment that is crucial for intracellular survival of these bacilli.


Assuntos
Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Fator de Transcrição STAT3/genética , Triglicerídeos/biossíntese , Linhagem Celular , Expressão Gênica , Humanos , Monócitos/citologia
8.
Int J Mol Sci ; 20(4)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813330

RESUMO

Acyl-CoA:glycerol-sn-3-phosphate acyltransferase (GPAT) is an enzyme responsible for the rate-limiting step in the synthesis of glycerophospholipids and triacylglycerol (TAG). The enzymes of mammalian species are classified into four isoforms; GPAT1 and GPAT2 are localized in the mitochondrial outer membrane, whereas GPAT3 and GPAT4 are localized in the endoplasmic reticulum membrane. The activity of each enzyme expressed is associated with physiological and pathological functions. The transcriptional regulation is well known, particularly in GPAT1. GPAT1 mRNA expression is mainly regulated by the binding of the transcriptional factor SREBP-1c to the specific element (the sterol regulatory element) flanking the GPAT1 promoter. The TAG level is controlled by the insulin-induced transcriptional expression of GPAT1, which occupies most of the GPAT activity in the liver. The transcriptional regulation of the other three GPAT isoforms remains undetermined in detail. It is predicted that retinoic acid serves as a transcription factor in the GPAT2 promoter. PPARγ (peroxisome proliferator-activated receptor γ) increases the mRNA expression of GPAT3, which is associated with TAG synthesis in adipose tissues. Although GPAT has been considered to be a key enzyme in the production of TAG, unexpected functions have recently been reported, particularly in GPAT2. It is likely that GPAT2 is associated with tumorigenesis and normal spermatogenesis. In this review, the physiological and pathophysiological roles of the four GPAT isoforms are described, alongside the transcriptional regulation of these enzymes.


Assuntos
Regulação Enzimológica da Expressão Gênica , Glicerol-3-Fosfato O-Aciltransferase/genética , Transcrição Gênica , Sequência de Aminoácidos , Animais , Carcinogênese/patologia , Glicerol-3-Fosfato O-Aciltransferase/química , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Humanos , Resistência à Insulina , Modelos Biológicos
9.
Clin Chim Acta ; 481: 184-188, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29550277

RESUMO

BACKGROUND: Measurement of lipoprotein-associated phospholipase A2 (Lp-PLA2) can be used as an adjunct to traditional cardiovascular risk factors for identifying individuals at higher risk of cardiovascular events. This can be performed by quantification of the protein concentration using an ELISA platform or by measuring Lp-PLA2 activity using platelet-activating factor (PAF) analog as substrate. Here, an enzymatic Lp-PLA2 activity assay method using 1-O-Hexadecyl-2-acetyl-rac-glycero-3-phosphocholine (rac C16 PAF) was developed. METHODS: The newly revealed substrate specificity of lysoplasmalogen-specific phospholipase D (lysophospholipase D (LysoPLD)) was exploited. Lp-PLA2 hydrolyzes 1-O-Hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (C16 PAF) to 1-O-Hexadecyl-2-hydroxy-sn-glycero-3-phosphocholine (LysoPAF). LysoPLD acted on LysoPAF, and the hydrolytically released choline was detected by choline oxidase. RESULTS: Regression analysis of Lp-PLA2 activity measured by the enzymatic Lp-PLA2 activity assay vs. two chemical Lp-PLA2 activity assays, i.e. LpPLA2 FS and PLAC® test, and ELISA, gave the following correlation coefficients: 0.990, 0.893 and 0.785, respectively (n = 30). CONCLUSION: Advantages of this enzymatic Lp-PLA2 activity assay compared with chemical Lp-PLA2 methods include the following; (i) only requires two reagents enabling a simple two-point linear calibration method with one calibrator (ii) no need for inhibitors of esterase-like activity in serum.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/sangue , Ensaios Enzimáticos/métodos , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Humanos , Análise de Regressão
10.
Med Image Anal ; 39: 18-28, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28410505

RESUMO

Automated organ segmentation from medical images is an indispensable component for clinical applications such as computer-aided diagnosis (CAD) and computer-assisted surgery (CAS). We utilize a multi-atlas segmentation scheme, which has recently been used in different approaches in the literature to achieve more accurate and robust segmentation of anatomical structures in computed tomography (CT) volume data. Among abdominal organs, the pancreas has large inter-patient variability in its position, size and shape. Moreover, the CT intensity of the pancreas closely resembles adjacent tissues, rendering its segmentation a challenging task. Due to this, conventional intensity-based atlas selection for pancreas segmentation often fails to select atlases that are similar in pancreas position and shape to those of the unlabeled target volume. In this paper, we propose a new atlas selection strategy based on vessel structure around the pancreatic tissue and demonstrate its application to a multi-atlas pancreas segmentation. Our method utilizes vessel structure around the pancreas to select atlases with high pancreatic resemblance to the unlabeled volume. Also, we investigate two types of applications of the vessel structure information to the atlas selection. Our segmentations were evaluated on 150 abdominal contrast-enhanced CT volumes. The experimental results showed that our approach can segment the pancreas with an average Jaccard index of 66.3% and an average Dice overlap coefficient of 78.5%.


Assuntos
Pâncreas/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Abdome/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
11.
Enzymes ; 38: 1-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26612643

RESUMO

Because the acetyl group of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF) is essential for its biological activity, the degradation of PAF is the most important mechanism that regulates the level of PAF. The enzyme that catalyzes the hydrolysis of acetyl group at the sn-2 position of PAF was termed PAF-acetylhydrolase (PAF-AH). Subsequent research revealed that the PAF-AH family includes intracellular forms called PAF-AH I and PAF-AH II as well as an extracellular isoform, plasma PAF-AH. PAF-AH I forms a complex consisting of catalytic subunits α1, α2, and ß regulatory subunits. PAF-AH I was identified from the brain, and previous studies focused on the role of PAF-AH I in brain development. However, subsequent studies found that PAF-AH I is involved in diverse functions such as spermatogenesis, amyloid-ß generation, cancer pathogenesis, and protein trafficking. Another intracellular enzyme, PAF-AH II, has no homology with PAF-AH I, although this enzyme shares sequence similarity to plasma PAF-AH. Because PAF-AH preferentially hydrolyzes oxidatively modulated or truncated phospholipids, it is considered to play a protective role against oxidative stress. Homologs of this enzyme are widely distributed among evolutionarily diverse organisms. For example, studies of Caenorhabditis elegans PAF-AH II demonstrate its contribution to epidermal morphogenesis. Extracellular plasma PAF-AH associates strongly with plasma lipoproteins. Because PAF-AH is mainly associated with LDL particles, it is considered to play an anti-inflammatory role by removing oxidized phospholipids generated in LDLs exposed to oxidative stress. In this overview, we describe the crucial roles of these three PAF-degrading enzymes in cell function and cell pathology.

12.
Enzymes ; 38: 117-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26612650

RESUMO

A single nucleotide polymorphism in the plasma PAF-AH enzyme, i.e., G994T, which causes the substitution of Val at amino acid 279 with Phe (V279F), has been found in the Japanese population. This enzyme preferentially degrades oxidatively modulated or truncated phospholipids; therefore, it has been suggested that this enzyme may prevent the accumulation of proinflammatory and proatherogenic oxidized phospholipids. This hypothesis is supported by the higher prevalence of the V279F mutation in patients with asthmatic and atherosclerotic diseases, as compared with healthy controls. This mutation is rare in the Caucasian population. The plasma PAF-AH mass and enzyme activity are distributed over a wide range in the plasma and they are positively correlated with low-density lipoprotein (LDL) cholesterol. However, several clinical studies in the Caucasian population have suggested that this enzyme has the opposite role. This enzyme plays an active role in the development and progression of atherosclerosis via proinflammatory and proatherogenic lysophosphatidylcholine and oxidized fatty acids produced through the oxidation of LDL by this enzyme. Thus, plasma PAF-AH is a unique enzyme with dual roles in human inflammatory diseases. In this chapter, on the basis of recent findings we describe the association between a naturally occurring missense mutation in plasma PAF-AH and human diseases especially including atherosclerosis and asthma.

13.
J Biochem ; 143(3): 369-75, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18079165

RESUMO

The fission yeast lsd1/fas2 strain carries a temperature-sensitive mutation of the fatty-acid-synthase alpha-subunit, exhibiting an aberrant mitosis lsd phenotype, with accumulation of very-long-chain fatty-acid-containing phospholipid (VLCFA-PL). A novel 90-kDa protein, Lsd90 (SPBC16E9.16c), was found to be newly expressed in small particle-like structures in lsd1/fas2 cells under restrictive conditions. Two mismatches leading to a double frame shift were found between the sequences of the lsd90(+) gene registered in the genomic database and the sequences determined experimentally at the amino acid, cDNA and genomic DNA levels. Unexpectedly, overexpression and disruption of the lsd90(+) gene in either lsd1/fas2 or wild-type cells did not affect either cell growth or expression of the lsd phenotype. The amounts of VLCFA-PL that accumulated in lsd90-overexpressing lsd1/fas2 cells were significantly lower than those in lsd1/fas2 cells, suggesting the involvement of Lsd90 in the metabolism of VLCFA-PL.


Assuntos
Ácidos Graxos/metabolismo , Mitose , Mutação/genética , Fosfolipídeos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Peso Molecular , Fenótipo , Transporte Proteico , Proteoma/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Análise de Sequência de Proteína , Frações Subcelulares/metabolismo
14.
Biochim Biophys Acta ; 1761(11): 1359-72, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17049457

RESUMO

Plasma platelet-activating factor (PAF)-acetylhydrolase (PAF-AH), which is characterized by tight association with plasma lipoproteins, degrades not only PAF but also phospholipids with oxidatively modified short fatty acyl chain esterified at the sn-2 position. Production and accumulation of these phospholipids are associated with the onset of inflammatory diseases and preventive role of this enzyme has been evidenced by many recent studies including prevalence of the genetic deficiency of the enzyme in the patients and therapeutic effects of treatment with recombinant protein or gene transfer. With respect to the atherosclerosis, however, it is not fully cleared whether this enzyme plays an anti-atherogenic role or pro-atherogenic role because plasma PAF-AH also might produce lysophosphatidylcholine (LysoPC) and oxidatively modified nonesterified fatty acids with potent pro-inflammatory and pro-atherogenic bioactivities. These dual roles of plasma PAF-AH might be regulated by the altered distribution of the enzyme between low density lipoprotein (LDL) and high density lipoprotein (HDL) particles because HDL-associated enzymes are considered to contribute to the protection of LDL from oxidative modification. This review focuses on the recent findings which address the role of this enzyme in the human diseases especially including asthma, septic shock and atherosclerosis.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/sangue , Asma/enzimologia , Aterosclerose/enzimologia , Choque Séptico/enzimologia , 1-Alquil-2-acetilglicerofosfocolina Esterase/deficiência , 1-Alquil-2-acetilglicerofosfocolina Esterase/uso terapêutico , Animais , Asma/tratamento farmacológico , Asma/patologia , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Ácidos Graxos/sangue , Humanos , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Inflamação/patologia , Lipoproteínas HDL/sangue , Lipoproteínas LDL/sangue , Lisofosfatidilcolinas/sangue , Oxirredução/efeitos dos fármacos , Proteínas Recombinantes/sangue , Proteínas Recombinantes/uso terapêutico , Choque Séptico/tratamento farmacológico , Choque Séptico/patologia
15.
Mol Ther ; 13(1): 118-26, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16213192

RESUMO

Oxidative stress has been proposed to play a crucial role in glomerulosclerosis, although its in vivo demonstration has proved taxing given the difficulty of inducing gene expression in specific renal cells. In this study, we examined whether the liver-directed expression of plasma platelet-activating factor acetylhydrolase (PAF-AH) would affect the glomerular pathophysiology in Imai rats, an animal model for glomerulosclerosis. Adenovirus-mediated liver-directed gene delivery of human PAF-AH resulted in a significant increase in plasma PAF-AH activity, which was detected almost exclusively on HDL. Histological examination of rats overexpressing PAF-AH showed not only the deposition of PAF-AH in mesangial cells, but also a reduction in hydroxynonenal and matrix protein content in the glomeruli. In situ hybridization analysis was negative for human PAF-AH mRNA in the kidney, while injection of HDL abundant in PAF-AH resulted in the deposition of PAF-AH in mesangial cells. Urine protein levels did not increase in rats overexpressing PAF-AH, while those of control rats increased significantly with age. This study provides direct evidence of the in vivo role of an enzyme that degrades lipid peroxides during the progression of glomerulosclerosis. Adenovirus-mediated extrarenal gene expression and lipoprotein-mediated glomeruli-targeted protein delivery promise to be a novel therapeutic approach to glomerulosclerosis.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/biossíntese , Adenoviridae/genética , Técnicas de Transferência de Genes , Glomerulosclerose Segmentar e Focal/terapia , Glomérulos Renais/metabolismo , Lipoproteínas HDL/metabolismo , Proteinúria/terapia , 1-Alquil-2-acetilglicerofosfocolina Esterase/sangue , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Animais , Aorta/metabolismo , Aorta/patologia , Creatinina/sangue , Dinoprosta/análogos & derivados , Dinoprosta/sangue , Modelos Animais de Doenças , Glomerulosclerose Segmentar e Focal/metabolismo , Hibridização In Situ , Glomérulos Renais/patologia , Peróxidos Lipídicos/metabolismo , Lipoproteínas HDL/sangue , Fígado/metabolismo , Fígado/patologia , Masculino , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Estresse Oxidativo , Proteinúria/metabolismo , Ratos , Ratos Sprague-Dawley
16.
J Biochem ; 138(4): 509-17, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16272147

RESUMO

Although red blood cells account for about 30% of total PAF-AH activity found in the blood, the physiological function of this enzyme is unknown. To understand the role and regulatory mechanism of this enzyme, we purified it from easily obtainable pig red blood cells. PAF-AH activity was mainly found in the soluble fraction of the red blood cells. Two peaks of enzyme activity appeared with increasing concentration of imidazole on column chromatography on nickel-nitroacetic acid (Ni-NTA) resin. We called these peaks of small and large enzyme activities fractions X and Y, respectively, and then further purified the enzymes by sequential chromatofocusing on Mono P and gel filtration on TSK G-3000. In the final preparation from fraction Y, two proteins bands corresponding to 26 kDa and 28 kDa were related to enzyme activity. Determination of the partial amino acid sequences of the proteins of 26 kDa and 28 kDa revealed that these proteins were identical to alpha(1) and alpha(2), respectively, both of which are catalytic subunits of Type I intracellular PAF-AH. On Western analysis, the 26 kDa and 28 kDa protein bands cross-reacted with specific monoclonal antibodies to alpha(1) and alpha(2), respectively. Since the apparent molecular weight of the natural enzyme was estimated to be about 60 kDa, the enzyme activity in fraction Y was thought to be that of a heterodimer consisting of alpha(1) and alpha(2). On the other hand, the enzyme activity in fraction X was thought to be that of a homodimer consisting of alpha(2). Other blood cells such as polymorphonuclear leukocytes and platelets only contained the alpha(2)/alpha(2) homodimer. It has been reported that the alpha(1)/alpha(2) heterodimer is poorly expressed in adult animals except for in the spermatogonium. Taken altogether, these results suggest that high expression of the alpha(1)/alpha(2) heterodimer is important for the physiological function of mature red blood cells.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Eritrócitos/enzimologia , 1-Alquil-2-acetilglicerofosfocolina Esterase/química , 1-Alquil-2-acetilglicerofosfocolina Esterase/isolamento & purificação , Sequência de Aminoácidos , Animais , Plaquetas/enzimologia , Western Blotting , Eletroforese em Gel de Poliacrilamida , Peso Molecular , Neutrófilos/enzimologia , Suínos
17.
Circulation ; 111(24): 3302-9, 2005 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-15956136

RESUMO

BACKGROUND: Platelet-activating factor (PAF) and PAF-like phospholipids are inactivated by PAF-acetylhydrolase (PAF-AH). Using nonhyperlipidemic animals, we tested whether local expression of PAF-AH into injured arteries might induce antithrombotic and antiinflammatory effects.Method and Results- Balloon-injured rabbit carotid arteries were infected at the time of injury with an adenovirus expressing either human plasma PAF-AH (AdPAF-AH) or bacterial beta-galactosidase (AdLacZ) or infused with saline. Seven days later, shear stress-induced thrombosis was observed in all AdLacZ-infected and saline-infused arteries (controls) but eliminated in AdPAF-AH-treated contralateral arteries, even in the presence of epinephrine or an inhibitor of NO production. Injury-induced expression of tissue factor was also significantly suppressed. In AdPAF-AH-treated arteries compared with controls, the expressions of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 and macrophage infiltration were decreased by 66%, 66%, and 71%, respectively (P<0.01), and intimal area and intima/media ratio were decreased on day 21 by 43% and 52%, respectively (P<0.05). Within 1 week after injury, oxidized lipoproteins (OxLDL) had readily accumulated in the arterial wall. However, this was markedly reduced in the AdPAF-AH-treated arteries. No differences in the titers of autoantibodies to OxLDL or total cholesterol in blood were found between controls and AdPAF-AH-treated rabbits. CONCLUSIONS: Our results show for the first time that OxLDL accumulates in arteries in nonhyperlipidemic animals within 1 week after injury and that local expression of PAF-AH reduces this accumulation and exerts antiinflammatory, antithrombotic, and antiproliferative effects without changing the plasma levels of PAF-AH activity or titers of autoantibodies to OxLDL.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Lesões das Artérias Carótidas/terapia , Inflamação/prevenção & controle , Lipoproteínas LDL/metabolismo , Trombose/prevenção & controle , Túnica Íntima/crescimento & desenvolvimento , 1-Alquil-2-acetilglicerofosfocolina Esterase/administração & dosagem , 1-Alquil-2-acetilglicerofosfocolina Esterase/farmacologia , Animais , Animais Geneticamente Modificados , Anti-Inflamatórios/administração & dosagem , Autoanticorpos/análise , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/complicações , Cateterismo/efeitos adversos , Moléculas de Adesão Celular/análise , Fibrinolíticos/administração & dosagem , Humanos , Inflamação/terapia , Lipoproteínas LDL/efeitos dos fármacos , Macrófagos/fisiologia , Coelhos , Estresse Mecânico , Trombose/etiologia , Trombose/terapia , Transdução Genética
18.
Arterioscler Thromb Vasc Biol ; 23(5): 829-35, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12649088

RESUMO

OBJECTIVE: Plasma platelet-activating factor (PAF) acetylhydrolase (AH) is an enzyme bound with lipoproteins that degrades not only PAF but also PAF-like oxidized phospholipids that are proposed to promote atherosclerosis. In this study, we investigated the distribution of PAF-AH protein among lipoprotein classes by using adenovirus-mediated gene transfer in mice, and we examined its effects on lipoprotein oxidation and foam cell formation of macrophages. METHODS AND RESULTS: Adenovirus-mediated overexpression of PAF-AH in mice resulted in a 76- to 140-fold increase in plasma PAF-AH activity. Contrary to the previous report, overexpressed human PAF-AH protein was bound to very low density lipoprotein, intermediate density lipoprotein, low density lipoprotein, and high density lipoprotein (HDL). All the lipoproteins with overexpressed human PAF-AH revealed more resistance against oxidative stress, which was associated with lower levels in autoantibody against oxidized low density lipoprotein in the plasma. In addition, HDL with human PAF-AH inhibited foam cell formation and facilitated cholesterol efflux in macrophages. CONCLUSIONS: These results suggest that human plasma PAF-AH exerts an antiatherogenic effect by binding to all the lipoproteins and thereby protecting them from oxidation, producing less proatherogenic lipoproteins and preserving HDL functions.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/fisiologia , Lipoproteínas/metabolismo , Estresse Oxidativo , Animais , Apolipoproteínas E/deficiência , Arteriosclerose/prevenção & controle , Autoanticorpos/sangue , Autoanticorpos/imunologia , Células Cultivadas/metabolismo , Colesterol/metabolismo , Células Espumosas/metabolismo , Humanos , Peroxidação de Lipídeos , Lipoproteínas LDL/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo
19.
Prog Lipid Res ; 42(2): 93-114, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12547653

RESUMO

The platelet-activating factor-acetylhydrolase (PAF-AH) is an enzyme which catalyzes the hydrolysis of acetyl ester at the sn-2 position of PAF. The family of PAF-AHs consists of two intracellular isoforms (Ib and II), and one secreted isoform (plasma). These PAF-AHs show different biochemical characteristics and molecular structures. Plasma PAF-AH and intracellular isoform, II degrade not only PAF but also oxidatively fragmented phospholipids with potent biological activities. Among these PAF-AHs, plasma PAF-AH has been the target of many clinical studies in inflammatory diseases, such as asthma, sepsis, and vascular diseases, because the plasma PAF-AH activity in the patients with these diseases is altered when compared with normal individuals. Finding a genetic deficiency in the plasma PAF-AH opened the gate in elucidating the protecting role of this enzyme in inflammatory diseases. The most common loss-of-function mutation, V279F, is found in more than 30% of Japanese subjects (4% homozygous, 27% heterozygous). This single nucleotide polymorphism in plasma PAF-AH and the resulting enzymatic deficiency is thought to be a genetic risk factor in various inflammatory diseases in Japanese subjects. Administration of recombinant plasma PAF-AH or transfer of the plasma PAF-AH gene improves pathology in animal models. Therefore, substitution of plasma PAF-AH would be an effective in the treatment of the patients with the inflammatory diseases and a novel clinical approach. In addition, the detection of polymorphisms in the plasma PAF-AH gene and abnormalities in enzyme activity would be beneficial in the diagnosis of the inflammatory diseases.


Assuntos
Lipoproteínas/metabolismo , Fosfolipases A , 1-Alquil-2-acetilglicerofosfocolina Esterase , Anafilaxia/sangue , Arteriosclerose/sangue , Asma/sangue , Diabetes Mellitus/sangue , Humanos , Nefropatias/sangue , Fosfolipases A/química , Fosfolipases A/genética , Fosfolipases A/metabolismo , Polimorfismo Genético , Doenças Vasculares/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...