Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 182: 113951, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35907360

RESUMO

Recurrent jellyfish blooms and their impacts on ecosystem deliverables of coastal habitats have become a major ecological concern. In view of this, repercussions of a surge in the jellyfish population on the plankton community were studied in Cochin estuary (CE), the largest tropical estuary along the southwest coast of India. Evaluation of hydrographic attributes and plankton community of the CE during early and late pre-monsoon revealed a marked disparity in its hydrography which favoured an increase in jellyfish abundances during late pre-monsoon, eliciting distinct impacts on the plankton community. The escalation in the jellyfish abundance and their subsequent predation on the crustacean plankton released the phytoplankton community from the grazing pressure resulting in a trophic cascade in the planktonic food web. The indiscriminate feeding of jellyfishes on the ichthyoplankton, decapod larvae, and Copepoda, the primary diet component of forage fishes evoked a potent threat to the fishery potential of CE.


Assuntos
Copépodes , Cifozoários , Animais , Ecossistema , Monitoramento Ambiental , Estuários , Plâncton , Estações do Ano
2.
Environ Sci Pollut Res Int ; 28(31): 42477-42495, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33813712

RESUMO

The influence of distinct tidal characteristics and nutrient status on mesozooplankton community was studied in six major estuaries along the west coast of India during the late-monsoon (MS) and post-monsoon (PM) periods. The macro-tidal estuaries in the north (Amba and Thane) exhibited higher nutrient concentration compared to the micro- and meso-tidal estuaries located in the south (Cochin and Nethravati) and central (Zuari and Mandovi) west coast of India. The markedly higher nitrate and phosphate levels in the macro-tidal estuaries during PM indicated anthropogenic contributions from domestic and industrial effluents, which significantly impacted the mesozooplankton community structure. Nutrient enrichments favored higher phytoplankton standing stock leading to low DO levels. In the micro- and meso-tidal estuaries, meso- and euryhaline copepods dominated whereas in the macro-tidal estuaries, the copepod community was dominated by euryhaline and coastal species. Furthermore, the high-saline eutrophic environment of macro-tidal estuaries formed congenial for the increased jellyfish preponderance during PM. The predation pressure exerted by the jellyfish population on the crustacean zooplankton and ichthyoplankton exerted an adverse impact on the potential fishery stock in the macro-tidal estuaries. Thus, the study reveals that the nutrient enrichment favoring a shift in the mesozooplankton community structure from nutritionally superior crustacean plankton to less desirable jellyfishes, which in turn, may lead to a threat on the estuarine pelagic energy transfer and ecosystem deliverables.


Assuntos
Ecossistema , Estuários , Monitoramento Ambiental , Hidrodinâmica , Índia , Nutrientes , Estações do Ano
3.
Mar Pollut Bull ; 155: 111191, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32469788

RESUMO

Consequences of a catastrophic flood on the habitat quality and the concurrent responses of the bentho-pelagic community were studied in Cochin estuary, a eutrophic estuary along the southwest coast of India. The episodic flood in 2018 led to a marked decline in the dissolved nutrients and heavy metal concentrations in water and sediments of the estuary. The pre-flood phytoplankton abundance dominated by a bloom-forming species Cerataulina bicornis experienced a significant drop after the flood. Contrarily, zooplankton and macrobenthos responded favorably towards the flood-imposed habitat alterations. Higher susceptibility to heavy metal pollution and increased grazing pressure from gelatinous carnivores restricted the abundance of Copepoda, the dominant zooplankton taxon during pre-flood. The lower heavy metal concentration in the sediment after the flood favored higher macrobenthic abundance and diversity with a conspicuous change in the community structure from opportunistic polychaetes, indicators of pollution to molluscans and crustaceans, indicators of the healthy benthic zones.


Assuntos
Metais Pesados/análise , Poluentes Químicos da Água/análise , Animais , Monitoramento Ambiental , Estuários , Inundações , Sedimentos Geológicos , Índia
4.
Environ Monit Assess ; 190(8): 465, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006680

RESUMO

The study addressed the impact of the El Niño 2015-2016 on the ecosystem functioning and the subsequent effects on the distribution and community structure of zooplankton in the Kavaratti reef, a prominent coral atoll in the tropical Indian Ocean. The elevated ocean temperature (SST) associated with El Niño resulted in a mass bleaching event affecting > 60% of the live corals of the Kavaratti atoll. The concomitant changes observed in the nutrient concentration, coral health, and phytoplankton of the reef environment during the course of the El Niño led to discernible variations in the zooplankton community with markedly higher abundance and heterogeneity in distribution during the peak period of El Niño compared to its waning phase. A notable shift was also evident in the community structure of Copepoda, the dominant zooplankton taxon, with a predominance of calanoids and poecilostomatoids in the peak period and by harpacticoid copepods in the waning phase of the El Niño. The harpacticoid, Macrosetella gracilis, dominated in the waning phase because of their unique adaptability in the utilization of Trichodesmium erythraeum, both as nutritional and physical substrates in the nutrient-depleted environment of the reef ecosystem.


Assuntos
Recifes de Corais , El Niño Oscilação Sul , Monitoramento Ambiental , Zooplâncton/fisiologia , Animais , Antozoários/fisiologia , Copépodes , Ecossistema , Oceano Índico , Fitoplâncton
5.
Environ Monit Assess ; 189(12): 653, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29188461

RESUMO

El Niño, an interannual climate event characterized by elevated oceanic temperature, is a prime threat for coral reef ecosystems worldwide, owing to their thermal threshold sensitivity. Phytoplankton plays a crucial role in the sustenance of reef trophodynamics. The cell size of the phytoplankton forms the "master morphological trait" with implications for growth, resource acquisition, and adaptability to nutrients. In the context of a strong El Niño prediction for 2015-2016, the present study was undertaken to evaluate the variations in the size-structured phytoplankton of Kavaratti reef waters, a major coral atoll along the southeast coast of India. The present study witnessed a remarkable change in the physicochemical environment of the reef water and massive coral bleaching with the progression of El Niño 2015-2016 from its peak to waning phase. The fluctuations observed in sea surface temperature, pH, and nutrient concentration of the reef water with the El Niño progression resulted in a remarkable shift in phytoplankton size structure, abundance, and community composition of the reef waters. Though low nutrient concentration of the waning phase resulted in lower phytoplankton biomass and abundance, the diazotroph Trichodesmium erythraeum predominated the reef waters, owing to its capability of the atmospheric nitrogen fixation and dissolved organic phosphate utilization.


Assuntos
Recifes de Corais , El Niño Oscilação Sul , Monitoramento Ambiental , Fitoplâncton/crescimento & desenvolvimento , Animais , Antozoários , Biomassa , Ecossistema , Índia , Oceano Índico , Fitoplâncton/classificação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...