Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Test Anal ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225724

RESUMO

A dopamine reuptake inhibitor is a type of medication or substance that works by blocking the reuptake of dopamine in the brain. Dopamine reuptake inhibitors offer multiple effects, including increased alertness, improved mood, and therapeutic potential for conditions like depression, ADHD, and Parkinson's disease. HDMP-28, or methylnaphthidate, is a potent synthetic stimulant from the phenyltropane class. It surpasses methylphenidate in both dopamine reuptake inhibition and half-life. As a dopamine reuptake inhibitor, it boosts dopamine levels by hindering reuptake into nerve cells, resulting in heightened stimulation and increased energy. In order to comprehensively address both the tangible and potential repercussions of the unauthorized utilization of the aforementioned substance in sports, it is imperative to establish analytical methodologies for the identification of the parent drug and its primary metabolites. Additionally, a comprehensive analysis of the metabolic characteristics of HDMP-28 in both human and animal subjects has yet to be published. This study explores the metabolic conversion of HDMP-28 mediated by equine liver microsomes and Cunninghamella elegans. An extraction and detection method was developed, optimized, and validated for doping assessment in equine urine and plasma. Liquid chromatography-high-resolution mass spectrometry was employed to determine metabolite structures. The study identified 31 (22 phase I and 9 phase II) metabolites of HDMP-28, including hydroxylated, hydrogenated, and hydrolyzed analogs. Glucuronic acid-conjugated metabolites were also detected. This manuscript describes metabolites based on the in vitro studies, which might not be the same in vivo. These findings aid in the detection and understanding of the illicit use of HDMP-28 in equestrian sports.

2.
Rapid Commun Mass Spectrom ; 37(14): e9530, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37125537

RESUMO

RATIONALE: The formation of mass adducts is common during electrospray ionization mass spectrometry (ESI-MS). However, the mechanism that leads to adduct formation is poorly understood and difficult to control. Multiplication of mass adducts at once will adversely impact the sensitivity of mass analysis and cause misinterpretation of the level of detection. Prior studies on selective androgen receptor modulators (SARMs) revealed an immense mass adduct formation in both positive and negative ESI modes. METHODS: In this study, additives in the mobile phases are investigated as a potential means of controlling mass adduct formation in various SARMs. RESULTS: The first evidence of chloride adduct formation when SARMs are detected via ESI-MS has been reported in this research. A series of mobile phase combinations were tested to achieve the optimal condition for HPLC-MS. A comparison was also made between adduct formation on various grades of water used for preparing the mobile phase. A validation study using equine urine and plasma was also conducted to assess the suitability of the developed method. CONCLUSION: The results of this study will allow for a more accurate identification of SARMs, which will make it easier to investigate their illicit use in horse racing.


Assuntos
Receptores Androgênicos , Espectrometria de Massas por Ionização por Electrospray , Animais , Cavalos , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida de Alta Pressão/métodos , Indicadores e Reagentes , Androgênios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...