Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 58(25): 6926-6933, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503664

RESUMO

Cladding light strippers (CLSs) are vital and one of the critical components for high-power fiber laser applications. In this study, we show the first studies of the formation mechanisms and optimum conditions of a CLS device using a buffered oxide etchant by a combined method of stain (wet) etching and vapor-phase etching. This high-power CLS was shown to result in a stripping performance of ∼17.2 dB at the launched power of 333 W (pump limited). The thermal imaging demonstrates that the maximum temperature reached when operating the device at maximum launched power was ∼75°C. The atomic force microscopy (AFM) results show that the combined method yields crystal-like structures with the height in microscales, whereas other conventional methods give only nanoscale roughness. The method also preserves the diameter of the CLS device close to the bare fiber with about 10 µm tapering leads to a high surface area to strip unwanted light, which is good for heat dissipation. The combined method possesses the outcome of two methods, including both the crystal-like structures and nanosized hillocks, resulting in high-power stripping performance and robustness.

2.
Opt Express ; 25(4): 4240-4253, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28241630

RESUMO

We demonstrate a spectroscopic imaging based super-resolution approach by separating the overlapping diffraction spots into several detectors during a single scanning period and taking advantage of the size-dependent emission wavelength in nanoparticles. This approach has been tested using off-the-shelf quantum dots (Invitrogen Qdot) and in-house novel ultra-small (~3 nm) Ge QDs. Furthermore, we developed a method-specific Gaussian fitting and maximum likelihood estimation based on a Matlab algorithm for fast QD localisation. This methodology results in a three-fold improvement in the number of localised QDs compared to non-spectroscopic images. With the addition of advanced ultra-small Ge probes, the number can be improved even further, giving at least 1.5 times improvement when compared to Qdots. Using a standard scanning confocal microscope we achieved a data acquisition rate of 200 ms per image frame. This is an improvement on single molecule localisation super-resolution microscopy where repeated image capture limits the imaging speed, and the size of fluorescence probes limits the possible theoretical localisation resolution. We show that our spectral deconvolution approach has a potential to deliver data acquisition rates on the ms scale thus providing super-resolution in live systems.


Assuntos
Fluorescência , Pontos Quânticos , Espectrometria de Fluorescência , Funções Verossimilhança
3.
J Synchrotron Radiat ; 23(1): 253-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698071

RESUMO

The sensitivity of X-ray absorption near-edge structure (XANES) to the local symmetry has been investigated in small (∼4 nm) matrix-free Ge quantum dots. The FDMNES package was used to calculate the theoretical XANES spectra that were compared with the experimental data of as-prepared and annealed nanoparticles. It was found that XANES data for an as-prepared sample can only be adequately described if the second coordination shell of the diamond-type structural model is included in the FDMNES calculations. This is in contrast to the extended X-ray absorption fine-structure data that show only the first-shell signal. These results suggest that, despite the high degree of disorder and a large surface-to-volume ratio, as-prepared small Ge quantum dots retain the diamond-type symmetry beyond the first shell. Furthermore, we utilized this sensitivity of XANES to the local symmetry to study annealed Ge quantum dots and found evidence for significant structural distortion which we attribute to the existence of surface disorder in the annealed oxygen-free Ge quantum dots.

4.
Nano Lett ; 15(11): 7334-40, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26457875

RESUMO

Over the last two decades, it has been demonstrated that size effects have significant consequences for the atomic arrangements and phase behavior of matter under extreme pressure. Furthermore, it has been shown that an understanding of how size affects critical pressure-temperature conditions provides vital guidance in the search for materials with novel properties. Here, we report on the remarkable behavior of small (under ~5 nm) matrix-free Ge nanoparticles under hydrostatic compression that is drastically different from both larger nanoparticles and bulk Ge. We discover that the application of pressure drives surface-induced amorphization leading to Ge-Ge bond overcompression and eventually to a polyamorphic semiconductor-to-metal transformation. A combination of spectroscopic techniques together with ab initio simulations were employed to reveal the details of the transformation mechanism into a new high density phase-amorphous metallic Ge.

5.
J Synchrotron Radiat ; 22(1): 105-12, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25537595

RESUMO

The structure of small (2-5 nm) Ge quantum dots prepared by the colloidal synthesis route is examined. Samples were synthesized using either GeO2 or GeCl4 as precursor. As-prepared samples were further annealed under Ar or H2/Ar atmosphere at different temperatures in order to understand the effect of annealing on their structure. It was found that as-prepared samples possess distinctly different structures depending on their synthesis route as indicated by their long-range ordering. An appreciable amount of oxygen was found to be bound to Ge in samples prepared with GeO2 as a precursor; however, not for GeCl4. Based on combined transmission electron microscope, Raman, X-ray diffraction and X-ray absorption measurements, it is suggested that as-prepared samples are best described by the core-shell model with a small nano-crystalline core and an amorphous outer layer terminated either with oxygen or hydrogen depending on the synthesis route. Annealing in an H2Ar atmosphere leads to sample crystallization and further nanoparticle growth, while at the same time reducing the Ge-O bonding. X-ray diffraction measurements for as-prepared and annealed samples indicate that diamond-type and metastable phases are present.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...