Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 463: 116427, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801311

RESUMO

The nucleoside analog entecavir (ETV) is a first-line pharmacotherapy for chronic hepatitis B in adult and pediatric patients. However, due to insufficient data on placental transfer and its effects on pregnancy, ETV administration is not recommended for women after conception. To expand knowledge of safety, we focused on evaluating the contribution of nucleoside transporters (NBMPR sensitive ENTs and Na+ dependent CNTs) and efflux transporters, P-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2), and multidrug resistance-associated transporter 2 (ABCC2), to the placental kinetics of ETV. We observed that NBMPR and nucleosides (adenosine and/or uridine) inhibited [3H]ETV uptake into BeWo cells, microvillous membrane vesicles, and fresh villous fragments prepared from the human term placenta, while Na+ depletion had no effect. Using a dual perfusion study in an open-circuit setup, we showed that maternal-to-fetal and fetal-to-maternal clearances of [3H]ETV in the rat term placenta were decreased by NBMPR and uridine. Net efflux ratios calculated for bidirectional transport studies performed in MDCKII cells expressing human ABCB1, ABCG2, or ABCC2 were close to the value of one. Consistently, no significant decrease in fetal perfusate was observed in the closed-circuit setup of dual perfusion studies, suggesting that active efflux does not significantly reduce maternal-to-fetal transport. In conclusion, ENTs (most likely ENT1), but not CNTs, ABCB1, ABCG2, and ABCC2, contribute significantly to the placental kinetics of ETV. Future studies should investigate the placental/fetal toxicity of ETV, the impact of drug-drug interactions on ENT1, and interindividual variability in ENT1 expression on the placental uptake and fetal exposure to ETV.


Assuntos
Neoplasias da Mama , Placenta , Animais , Criança , Feminino , Humanos , Gravidez , Ratos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Transporte de Nucleosídeos/metabolismo , Proteínas de Transporte de Nucleosídeos/farmacologia , Nucleosídeos/metabolismo , Nucleosídeos/farmacologia , Placenta/metabolismo , Ratos Wistar , Uridina
2.
Pharm Res ; 37(3): 58, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32086630

RESUMO

PURPOSE: S-(4-Nitrobenzyl)-6-thioinosine (NBMPR) is routinely used at concentrations of 0.10 µM and 0.10 mM to specifically inhibit transport of nucleosides mediated by equilibrative nucleoside transporters 1 (ENT1) and 2 (ENT2), respectively. We recently showed that NBMPR (0.10 mM) might also inhibit placental active efflux of [3H]zidovudine and [3H]tenofovir disoproxil fumarate. Here we test the hypothesis that NBMPR abolishes the activity of P-glycoprotein (ABCB1) and/or breast cancer resistance protein (ABCG2). METHODS: We performed accumulation assays with Hoechst 33342 (a model dual substrate of ABCB1 and ABCG2) and bi-directional transport studies with the ABCG2 substrate [3H]glyburide in transduced MDCKII cells, accumulation studies in choriocarcinoma-derived BeWo cells, and in situ dual perfusions of rat term placenta with glyburide. RESULTS: NBMPR inhibited Hoechst 33342 accumulation in MDCKII-ABCG2 cells (IC50 = 53 µM) but not in MDCKII-ABCB1 and MDCKII-parental cells. NBMPR (0.10 mM) also inhibited bi-directional [3H]glyburide transport across monolayers of MDCKII-ABCG2 cells and blocked ABCG2-mediated [3H]glyburide efflux by rat term placenta in situ. CONCLUSION: NBMPR at a concentration of 0.10 mM abolishes ABCG2 activity. Researchers using NBMPR to evaluate the effect of ENTs on pharmacokinetics must therefore interpret their results carefully if studying compounds that are substrates of both ENTs and ABCG2.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transporte Biológico/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Tioinosina/análogos & derivados , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antivirais/metabolismo , Antivirais/farmacocinética , Linhagem Celular , Cães , Feminino , Humanos , Células Madin Darby de Rim Canino , Proteínas de Neoplasias/metabolismo , Placenta/efeitos dos fármacos , Placenta/metabolismo , Gravidez , Ratos , Ratos Wistar , Tioinosina/farmacologia
3.
Drug Metab Dispos ; 46(11): 1817-1826, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30097436

RESUMO

Abacavir is a preferred antiretroviral drug for preventing mother-to-child human immunodeficiency virus transmission; however, mechanisms of its placental transfer have not been satisfactorily described to date. Because abacavir is a nucleoside-derived drug, we hypothesized that the nucleoside transporters, equilibrative nucleoside transporters (ENTs, SLC29A) and/or Na+-dependent concentrative nucleoside transporters (CNTs, SLC28A), may play a role in its passage across the placenta. To test this hypothesis, we performed uptake experiments using the choriocarcinoma-derived BeWo cell line, human fresh villous fragments, and microvillous plasma membrane (MVM) vesicles. Using endogenous substrates of nucleoside transporters, [3H]-adenosine (ENTs, CNT2, and CNT3) and [3H]-thymidine (ENTs, CNT1, and CNT3), we showed significant activity of ENT1 and CNT2 in BeWo cells, whereas experiments in the villous fragments and MVM vesicles, representing a model of the apical membrane of a syncytiotrophoblast, revealed only ENT1 activity. When testing [3H]-abacavir uptakes, we showed that of the nucleoside transporters, ENT1 plays the dominant role in abacavir uptake into placental tissues, whereas contribution of Na+-dependent transport, most likely mediated by CNTs, was observed only in BeWo cells. Subsequent experiments with dually perfused rat term placentas showed that Ent1 contributes significantly to overall [3H]-abacavir placental transport. Finally, we quantified the expression of SLC29A in first- and third-trimester placentas, revealing that SLC29A1 is the dominant isoform. Neither SLC29A1 nor SLC29A2 expression changed over the course of placental development, but there was considerable interindividual variability in their expression. Therefore, drug-drug interactions and the effect of interindividual variability in placental ENT1 expression on abacavir disposition into fetal circulation should be further investigated to guarantee safe and effective abacavir-based combination therapies in pregnancy.


Assuntos
Fármacos Anti-HIV/metabolismo , Didesoxinucleosídeos/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Proteínas de Transporte de Nucleosídeos/metabolismo , Placenta/metabolismo , Adenosina/metabolismo , Animais , Transporte Biológico/fisiologia , Linhagem Celular Tumoral , Transportador Equilibrativo 2 de Nucleosídeo/metabolismo , Feminino , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Nucleosídeos/metabolismo , Gravidez , Ratos , Ratos Wistar
4.
Mol Pharm ; 15(7): 2732-2741, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29782174

RESUMO

Equilibrative ( SLC29A) and concentrative ( SLC28A) nucleoside transporters contribute to proper placental development and mediate uptake of nucleosides/nucleoside-derived drugs. We analyzed placental expression of SLC28A mRNA during gestation. Moreover, we studied in choriocarcinoma-derived BeWo cells whether SLC29A and SLC28A mRNA levels can be modulated by activity of adenylyl cyclase, retinoic acid receptor activation, CpG islands methylation, or histone acetylation, using forskolin, all- trans-retinoic acid, 5-azacytidine, and sodium butyrate/sodium valproate, respectively. We found that expression of SLC28A1, SLC28A2, and SLC28A3 increases during gestation and reveals considerable interindividual variability. SLC28A2 was shown to be a dominant subtype in the first-trimester and term human placenta, while SLC28A1 exhibited negligible expression in the term placenta only. In BeWo cells, we detected mRNA of SLC28A2 and SLC28A3. Levels of the latter were affected by 5-azacytidine and all- trans-retinoic acid, while the former was modulated by sodium valproate (but not sodium butyrate), all- trans-retinoic acid, 5-azacytidine, and forskolin that caused 25-fold increase in SLC28A2 mRNA; we documented by analysis of syncytin-1 that the observed changes in SLC28A expression do not correlate with the morphological differentiation state of BeWo cells. Upregulated SLC28A2 mRNA was reflected in elevated uptake of [3H]-adenosine, high-affinity substrate of concentrative nucleoside transporter 2. Using KT-5720 and inhibitors of phosphodiesterases, we subsequently confirmed importance of cAMP/protein kinase A pathway in SLC28A2 regulation. On the other hand, SLC29A genes exhibited constitutive expression and none of the tested compounds increased SLC28A1 expression to detectable levels. In conclusion, we provide the first evidence that methylation status and activation of retinoic acid receptor affect placental SLC28A2 and SLC28A3 transcription and substrates of concentrative nucleoside transporter 2 might be taken up in higher extent in placentas with overactivated cAMP/protein kinase A pathway and likely in the term placenta.


Assuntos
Diferenciação Celular/fisiologia , Idade Gestacional , Proteínas de Membrana Transportadoras/metabolismo , Placenta/metabolismo , Carbazóis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas de Transporte de Nucleosídeo Equilibrativas/genética , Proteínas de Transporte de Nucleosídeo Equilibrativas/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Proteínas de Membrana Transportadoras/genética , Placenta/efeitos dos fármacos , Gravidez , Pirróis/farmacologia , RNA Mensageiro/metabolismo , Regulação para Cima
5.
J Pharm Pharmacol ; 68(1): 84-92, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26727197

RESUMO

OBJECTIVES: Tenofovir and emtricitabine are very effective and well-tolerated antiretrovirals representing current backbone of the antiretroviral combination regimens for the prevention of perinatal HIV transmission. The aim of our study was to determine whether tenofovir or emtricitabine administered in long-term fashion affect expression of two widely described pharmacokinetic determinants, P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2), in maternal or fetal biological tissues. METHODS: For this purpose, pregnant Wistar rats were administered tenofovir (2.25 mg/kg/day), emtricitabine (3.5 mg/kg/day) or saline i.m. for 10 days (from the 12th to 21st gestation day). On the 22nd day, the placenta and maternal/fetal intestine, brain, kidneys and liver were sampled and analysed for Abcb1a, Abcb1b and Abcg2 expression; placental and newborns' weights were also monitored. KEY FINDINGS: We found that long-term application of tenofovir or emtricitabine did not significantly affect expression of Abcb1a, Abcb1b and Abcg2 in either maternal or fetal organs. However, tenofovir administration significantly increased placenta-to-birthweight ratio, a strong indicator of various diseases occurring later in life. CONCLUSIONS: Our data broaden current knowledge on safety profile of tenofovir and emtricitabine use in pregnancy. Nevertheless, further research in other mammal species, including humans, is important to fully elucidate this issue.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Emtricitabina/administração & dosagem , Feto/efeitos dos fármacos , Placenta/efeitos dos fármacos , Tenofovir/administração & dosagem , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Feminino , Feto/metabolismo , Placenta/metabolismo , Gravidez , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...