Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 203: 111753, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34331923

RESUMO

In this study, a magnetic chitosan/Al2O3/Fe3O4 (M-Cs) nanocomposite was developed by ethylenediaminetetraacetic acid (EDTA) functionalization to enhance its adsorption behavior for the removal of Cd(II), Cu(II) and Zn(II) metal ions from aqueous solution. The results revealed that the EDTA functionalization of M-Cs increased its adsorption capacity ~9.1, ~5.6 and ~14.3 times toward Cu, Cd and Zn ions. The maximum adsorption capacity followed the order of Cd(II) > Cu(II) > Zn(II) and the maximum adsorption efficiency was achieved at pH of 5.3 with the removal percentage of 99.98, 93.69 and 83.81 %, respectively, for the removal of Cu, Cd and Zn ions. The metal ions adsorption kinetic obeyed pseudo-second-order equation and the Langmuir isothermal was found the most fitted model for their adsorption isothermal experimental data. In addition, the thermodynamic study illustrated that the adsorption process was exothermic and spontaneous in nature.


Assuntos
Quitosana , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cobre , Concentração de Íons de Hidrogênio , Íons , Cinética , Fenômenos Magnéticos
2.
RSC Adv ; 11(18): 10615-10624, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35423543

RESUMO

In situ electrochemical activation as a new pre-treatment method is extremely effective for enhanced electrocatalytic performances for different applications. With the help of this method, in situ surface modification of electrocatalyst is achieved without using pre-made seeds or complex synthesis procedure. Herein, with the purpose of finding an in situ and simple electrochemical activation protocol, the green synthesis of Au/Pd nanoparticles (AuPd) by means of polyoxometalate (POM) is reported. Structural analysis of the AuPd nanohybrid unveil the Au-core/Pd-shell structure which surrounded by POM. We propose a novel cathodic electrochemical activation in phosphate buffer solution which can greatly boost the electrocatalytic activity of the as-prepared AuPd and Pd electrocatalyst not only for hydrogen evolution reaction (HER) as a model of electro-reduction, but also for methanol and ethanol electro-oxidation reaction (MOR & EOR). For the HER in 1 M NaOH solution, after the electrochemical activation, the needed potential to drive a geometrical current density of 10 mA cm-2 significantly decreases from - 400 mV vs. the reversible hydrogen electrode (RHE) to -290 mV vs. RHE. For the EOR and MOR, electrochemically activated AuPd realized 3.4- and 2.9- fold increase in mass current density (mA mgPd -1) with respect to the pristine AuPd electrocatalyst, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...