Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; : 174760, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025144

RESUMO

In recent decades, extensive monitoring programmes have been conducted at the national, international, and project levels with the objective of expanding our understanding of the contamination of surface waters with micropollutants, which are often referred to as hazardous substances (HS). It has been demonstrated that HS enter surface waters via a number of pathways, including groundwater, atmospheric deposition, soil erosion, and urban systems. Given the ever-growing list of substances and the high resource demand associated with laboratory analysis, it is common practice to quantify the listed pathways based on emission factors derived from temporally and spatially constrained monitoring programmes. The derivation calculations are subject to high uncertainties, and substantial knowledge gaps remain regarding the relative importance of the unique pathways, territories, and periods. This publication presents a monitoring method designed to quantify the unique emission pathways of HS in large geographical areas characterized by differences in land use, population, and economic development. The method will be tested for a wide range of HS (ubiquitous organic and inorganic pollutants, pesticides, pharmaceuticals) throughout small sub-catchments located on tributaries. The results of the test application demonstrate a high diversity of both emission loads and instream concentrations throughout different regions for numerous substances. Riverine concentrations are found to be highly dependent on the flow status. Soil concentration levels of polycyclic aromatic hydrocarbons (PAH) and perfluoroalkyl substances (PFAS) are found to be in proportion, whereas that of potentially toxic elements (PTE) in a reverse relationship with economic development. In many instances, concentration levels are also contingent upon land use. The findings of this study reinforce the necessity for the implementation of harmonised and concerted HS monitoring programmes, which should encompass a diverse range of substances, emission sources, pathways and geographical areas. This is essential for the reliable development of emission factors.

2.
Ambio ; 51(8): 1855-1870, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35212976

RESUMO

Riverine floods cause increasingly severe damages to human settlements and infrastructure. Ecosystems have a natural capacity to decrease both severity and frequency of floods. Natural flood regulation processes along freshwaters can be attributed to two different mechanisms: flood prevention that takes place in the whole catchment and flood mitigation once the water has accumulated in the stream. These flood regulating mechanisms are not consistently recognized in major ecosystem service (ES) classifications. For a balanced landscape management, it is important to assess the ES flood regulation so that it can account for the different processes at the relevant sites. We reviewed literature, classified them according to these mechanisms, and analysed the influencing ecosystem characteristics. For prevention, vegetation biomass and forest extent were predominant, while for mitigation, the available space for water was decisive. We add some aspects on assessing flood regulation as ES, and suggest also to include flood hazard into calculations.


Assuntos
Ecossistema , Inundações , Florestas , Humanos , Rios , Água
3.
Environ Monit Assess ; 192(9): 572, 2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32772184

RESUMO

Implementation of an extensive urban runoff monitoring program, targeting the quantification of heavy metal and organic micropollutant loads, necessitated the development of an autonomous water sampler. The design requirements for the device were to fulfill flow-proportional continuous composite sampling of urban runoff events in a widely customizable, relatively inexpensive, and simple way. In this paper, we introduce the concept along with the experiences gained from the first several months of field tests at seven pilot areas in Hungary that represent a wide range of urban environments. During the test period, prototype samplers were placed in natural (urban) streams as well as stormwater drainage pipes, resulting in a total of 97 automatic composite runoff samples. At two sites, an additional 28 manual grab samples were collected to represent time series from five distinct runoff events. Sampling efficiency was checked by comparing collected volumes with the theoretical ones (derived from pump mileage data). Ranges and ratios of concentrations measured from composite and grab samples were graphically interpreted in order to evaluate their representativeness. It has been shown that the concept is suitable for conducting cost-effective urban runoff characterization surveys targeting inter-event variability.


Assuntos
Poluentes Ambientais , Chuva , Monitoramento Ambiental , Hungria , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...