Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 35(24)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36940480

RESUMO

We report the synthesis of transition-metal-doped ferromagnetic elemental single-crystal semiconductors with quantum oscillations using the physical vapor transport method. The 7.7 atom% Cr-doped Te crystals (Cr:Te) show ferromagnetism, butterfly-like negative magnetoresistance in the low temperature (<3.8 K) and low field (<0.15 T) region, and high Hall mobility, e.g. 1320 cm2V-1s-1at 30 K and 350 cm2V-1s-1at 300 K, implying that Cr:Te crystals are ferromagnetic elemental semiconductors. WhenB// [001] // I, the maximum negative MR is ∼-27% atT= 20 K andB= 8 T. In the low temperature semiconducting region, Cr:Te crystals show strong discrete scale invariance dominated logarithmic quantum oscillations when the direction of the magnetic fieldBis parallel to the [100] crystallographic direction (B// [100]) and show Landau quantization dominated Shubnikov-de Haas oscillations forB// [210] direction, which suggests the broken rotation symmetry of the Fermi pockets in the Cr:Te crystals. The findings of coexistence of multiple quantum oscillations and ferromagnetism in such an elemental quantum material may inspire more study of narrow bandgap semiconductors with ferromagnetism and quantum phenomena.

2.
Nat Commun ; 14(1): 1693, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973266

RESUMO

The conducting boundary states of topological insulators appear at an interface where the characteristic invariant ℤ2 switches from 1 to 0. These states offer prospects for quantum electronics; however, a method is needed to spatially-control ℤ2 to pattern conducting channels. It is shown that modifying Sb2Te3 single-crystal surfaces with an ion beam switches the topological insulator into an amorphous state exhibiting negligible bulk and surface conductivity. This is attributed to a transition from ℤ2 = 1 → ℤ2 = 0 at a threshold disorder strength. This observation is supported by density functional theory and model Hamiltonian calculations. Here we show that this ion-beam treatment allows for inverse lithography to pattern arrays of topological surfaces, edges and corners which are the building blocks of topological electronics.

3.
ACS Appl Mater Interfaces ; 14(4): 6102-6108, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35050569

RESUMO

Understanding the air stability of MnBi2Te4 thin films is crucial for the development and long-term operation of electronic devices based on magnetic topological insulators. In the present work, we study MnBi2Te4 thin films upon exposure to the atmosphere using a combination of synchrotron-based photoelectron spectroscopy, room-temperature electrical transport, and atomic force microscopy to determine the oxidation process. After 2 days of air exposure, a 2 nm thick oxide passivates the surface, corresponding to the oxidation of only the top two surface layers, with the underlying layers preserved. This protective oxide layer results in samples that still exhibit metallic conduction even after several days of air exposure. Furthermore, the work function decreases from 4.4 eV for pristine MnBi2Te4 to 4.0 eV after the formation of the oxide, along with only a small shift in the core levels, indicating minimal doping as a result of air exposure. With the oxide confined to the top surface layers, and the underlying layers preserved, it may be possible to explore new avenues in how to handle, prepare, and passivate future MnBi2Te4 devices.

4.
Adv Mater ; 33(33): e2007795, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34185344

RESUMO

Inducing long-range magnetic order in 3D topological insulators can gap the Dirac-like metallic surface states, leading to exotic new phases such as the quantum anomalous Hall effect or the axion insulator state. These magnetic topological phases can host robust, dissipationless charge and spin currents or unique magnetoelectric behavior, which can be exploited in low-energy electronics and spintronics applications. Although several different strategies have been successfully implemented to realize these states, to date these phenomena have been confined to temperatures below a few Kelvin. This review focuses on one strategy: inducing magnetic order in topological insulators by proximity of magnetic materials, which has the capability for room temperature operation, unlocking the potential of magnetic topological phases for applications. The unique advantages of this strategy, the important physical mechanisms facilitating magnetic proximity effect, and the recent progress to achieve, understand, and harness proximity-coupled magnetic order in topological insulators are discussed. Some emerging new phenomena and applications enabled by proximity coupling of magnetism and topological materials, such as skyrmions and the topological Hall effect, are also highlighted, and the authors conclude with an outlook on remaining challenges and opportunities in the field.

5.
Proc Natl Acad Sci U S A ; 113(40): 11148-11151, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27647884

RESUMO

Optically transparent conducting materials are essential in modern technology. These materials are used as electrodes in displays, photovoltaic cells, and touchscreens; they are also used in energy-conserving windows to reflect the infrared spectrum. The most ubiquitous transparent conducting material is tin-doped indium oxide (ITO), a wide-gap oxide whose conductivity is ascribed to n-type chemical doping. Recently, it has been shown that ionic liquid gating can induce a reversible, nonvolatile metallic phase in initially insulating films of WO3 Here, we use hard X-ray photoelectron spectroscopy and spectroscopic ellipsometry to show that the metallic phase produced by the electrolyte gating does not result from a significant change in the bandgap but rather originates from new in-gap states. These states produce strong absorption below ∼1 eV, outside the visible spectrum, consistent with the formation of a narrow electronic conduction band. Thus WO3 is metallic but remains colorless, unlike other methods to realize tunable electrical conductivity in this material. Core-level photoemission spectra show that the gating reversibly modifies the atomic coordination of W and O atoms without a substantial change of the stoichiometry; we propose a simple model relating these structural changes to the modifications in the electronic structure. Thus we show that ionic liquid gating can tune the conductivity over orders of magnitude while maintaining transparency in the visible range, suggesting the use of ionic liquid gating for many applications.

6.
Sci Adv ; 2(4): e1501870, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27152355

RESUMO

It is well established that the anomalous Hall effect displayed by a ferromagnet scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. We show that the noncolinear triangular antiferromagnet Mn3Ge exhibits a large anomalous Hall effect comparable to that of ferromagnetic metals; the magnitude of the anomalous conductivity is ~500 (ohm·cm)(-1) at 2 K and ~50 (ohm·cm)(-1) at room temperature. The angular dependence of the anomalous Hall effect measurements confirms that the small residual in-plane magnetic moment has no role in the observed effect except to control the chirality of the spin triangular structure. Our theoretical calculations demonstrate that the large anomalous Hall effect in Mn3Ge originates from a nonvanishing Berry curvature that arises from the chiral spin structure, and that also results in a large spin Hall effect of 1100 (h/e) (ohm·cm)(-1), comparable to that of platinum. The present results pave the way toward the realization of room temperature antiferromagnetic spintronics and spin Hall effect-based data storage devices.


Assuntos
Germânio/química , Imãs/química , Manganês/química , Estrutura Molecular
7.
Phys Rev Lett ; 113(2): 025503, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062205

RESUMO

The ubiquitous low-energy excitations, known as two-level tunneling systems (TLSs), are one of the universal phenomena of amorphous solids. Low temperature elastic measurements show that e-beam amorphous silicon (a-Si) contains a variable density of TLSs which diminishes as the growth temperature reaches 400 °C. Structural analyses show that these a-Si films become denser and more structurally ordered. We conclude that the enhanced surface energetics at a high growth temperature improved the amorphous structural network of e-beam a-Si and removed TLSs. This work obviates the role hydrogen was previously thought to play in removing TLSs in the hydrogenated form of a-Si and suggests it is possible to prepare "perfect" amorphous solids with "crystal-like" properties for applications.

8.
ACS Nano ; 8(6): 5784-9, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24847770

RESUMO

The development of new phases of matter at oxide interfaces and surfaces by extrinsic electric fields is of considerable significance both scientifically and technologically. Vanadium dioxide (VO2), a strongly correlated material, exhibits a temperature-driven metal-to-insulator transition, which is accompanied by a structural transformation from rutile (high-temperature metallic phase) to monoclinic (low-temperature insulator phase). Recently, it was discovered that a low-temperature conducting state emerges in VO2 thin films upon gating with a liquid electrolyte. Using photoemission spectroscopy measurements of the core and valence band states of electrolyte-gated VO2 thin films, we show that electronic features in the gate-induced conducting phase are distinct from those of the temperature-induced rutile metallic phase. Moreover, polarization-dependent measurements reveal that the V 3d orbital ordering, which is characteristic of the monoclinic insulating phase, is partially preserved in the gate-induced metallic phase, whereas the thermally induced metallic phase displays no such orbital ordering. Angle-dependent measurements show that the electronic structure of the gate-induced metallic phase persists to a depth of at least ∼40 Å, the escape depth of the high-energy photoexcited electrons used here. The distinct electronic structures of the gate-induced and thermally induced metallic phases in VO2 thin films reflect the distinct mechanisms by which these states originate. The electronic characteristics of the gate-induced metallic state are consistent with the formation of oxygen vacancies from electrolyte gating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...