Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-271957

RESUMO

A consensus virtual screening protocol has been applied to ca. 2000 approved drugs to seek inhibitors of the main protease (Mpro) of SARS-CoV-2, the virus responsible for COVID-19. 42 drugs emerged as top candidates, and after visual analyses of the predicted structures of their complexes with Mpro, 17 were chosen for evaluation in a kinetic assay for Mpro inhibition. Remarkably 14 of the compounds at 100-M concentration were found to reduce the enzymatic activity and 5 provided IC50 values below 40 M: manidipine (4.8 M), boceprevir (5.4 M), lercanidipine (16.2 M), bedaquiline (18.7 M), and efonidipine (38.5 M). Structural analyses reveal a common cloverleaf pattern for the binding of the active compounds to the P1, P1, and P2 pockets of Mpro. Further study of the most active compounds in the context of COVID-19 therapy is warranted, while all of the active compounds may provide a foundation for lead optimization to deliver valuable chemotherapeutics to combat the pandemic.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20095430

RESUMO

AO_SCPLOWBSTRACTC_SCPLOWPolymorphisms in MHC-I protein sequences across human populations significantly impacts viral peptide binding capacity and thus alters T cell immunity to infection. Consequently, allelic variants of the MHC-I protein have been found to be associated with patient outcome to various viral infections, including SARS-CoV. In the present study, we assess the relationship between observed SARS-CoV-2 population mortality and the predicted viral binding capacities of 52 common MHC-I alleles. Potential SARS-CoV-2 MHC-I peptides were identified using a consensus MHC-I binding and presentation prediction algorithm, called EnsembleMHC. Starting with nearly 3.5 million candidates, we resolved a few hundred highly probable MHC-I peptides. By weighing individual MHC allele-specific SARS-CoV-2 binding capacity with population frequency in 23 countries, we discover a strong inverse correlation between the predicted population SARS-CoV-2 peptide binding capacity and observed mortality rate. Our computations reveal that peptides derived from the structural proteins of the virus produces a stronger association with observed mortality rate, highlighting the importance of S, N, M, E proteins in driving productive immune responses. The correlation between epitope binding capacity and population mortality risk remains robust across a range of socioeconomic and epidemiological factors. A combination of binding capacity, number of deaths due to COPD complications, gender demographics. and the proportions of the population that were over the age of 65 and overweight offered the strongest determinant of at-risk populations. These results bring to light how molecular changes in the MHC-I proteins may affect population-level outcomes of viral infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...