Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Can J Infect Dis Med Microbiol ; 2022: 4251486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35340918

RESUMO

Background: Antimicrobial resistance (AMR) is a global health problem which is constantly evolving and varies spatially and temporally. Resistance to a particular antibiotic may serve as a selection and coselection marker for the same or different antibiotic classes. Therefore, this cross-sectional study was conducted to predict the association of phenotypic and genotypic resistance traits in uropathogenic Escherichia coli (UPEC). Method: A total of 42 UPEC from 83 urine samples were investigated for the prevalence and association of phenotypic and genotypic AMR traits. Antibiogram profiling was carried out by Kirby-Bauer's disc diffusion method and AMR genes (ARGs) were detected by PCR. Result: UPECs were isolated from 50.60% (42/83) of the samples examined. Of these, 80.95% of cases were derived from females, and 38.10% of cases were found in the age group of 21-30 years. The isolates were shown to have a high frequency of resistance to tetracycline (92.86%), followed by sulfonamide (71.43%), ampicillin (52.38%), trimethoprim-sulfamethoxazole (47.62%), and 28.57% each to streptomycin, chloramphenicol, and erythromycin. The most prevalent antimicrobial resistance genes (ARGs) in these isolates were tet(A) (78.57%), tet(B) (76.19%), sul1 (61.91%), dfrA1 (35.71%), bla SHV (26.19%), cmlA (19.05%), and CITM, qnrA, and catA1 each at 11.91%. According to statistical analysis, ampicillin, sulfonamide, trimethoprim-sulfamethoxazole, and ciprofloxacin resistance were strongly correlated with the presence of bla SHV, sul1, dfrA1, and qnrA, respectively. Nonsignificant associations were observed between ciprofloxacin-tetracycline, sulfonamide-erythromycin pairs as well as between tet(A) and tet(B) genes. Besides, coselection was also assumed in the case of chloramphenicol resistance genes, namely, catA1 and cmlA. Conclusion: Both the phenotypic and genetic resistance traits were found in the UPEC isolates. Statistical association and coselection phenomena among AMR phenotypes and genotypes were also observed but required to be validated in a broad-scale study. However, these findings might have important implications for the development of an AMR prediction model to tackle future AMR outbreaks.

2.
J Genet Eng Biotechnol ; 16(2): 375-380, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30733749

RESUMO

Dyeing effluents have become a vital source of water pollution. Due to the xenobiotic properties and toxicity to all life forms including humans, removal of undesirable color and associated toxicity is crucial. In this study, five dye decolorizing bacteria were isolated from dyeing effluent using selective enrichment culture in Bushnell-Haas (BH) medium amended with co-substrate (i.e. glucose, yeast extract) and 100 mg L-1 of each commercially available reactive dyes viz. Novacron Orange FN-R, Novacron Brilliant Blue FN-R, Novacron Super Black G, Bezema Yellow S8-G and Bezema Red S2-B. The isolated bacteria were identified and assigned as Neisseria sp., Vibrio sp., Bacillus sp., Bacillus sp. and Aeromonas sp. based on their phenotypic (cultural, morphological, physiological and biochemical characteristic) observation. The dye decolorization efficiency was estimated spectrophotometrically up to 6 days of static incubation at 37 °C and observed that all of the isolates were unable to induce decolorization in absence of co-substrate. In case of monoculture, decolorization percentage varies from no visible decolorization (Bezema Red S2-B by Ek-5) to highest 90% decolorization (Novacron Brilliant Blue FN-R by Ek-13) whereas the decolorization percentage of bacterial consortium varies from 65% (Bezema Yellow S8-G) to 90% (Novacron Brilliant Blue FN-R and Novacron Super Black G). The study outlines the co-substrates mediated decolorization process where bacterial consortium proved as efficient dye decolorizer than that of the monocultures. This finding confers possibility of using novel microbial consortium for biological treatment of disreputable dyeing effluents.

3.
Int J Food Sci ; 2016: 8605689, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27019847

RESUMO

The present study aims at the microbiological analysis of export oriented frozen fishes, namely, Jew fish, Tongue Sole fish, Cuttle fish, Ribbon fish, Queen fish, and fish processing water and ice from a view of public health safety and international trade. Microbiological analysis includes the determination of total viable aerobic count by standard plate count method and enumeration of total coliforms and fecal coliforms by most probable number method. The presence of specific fish pathogens such as Salmonella spp. and Vibrio cholerae were also investigated. The TVAC of all the samples was estimated below 5 × 10(5) cfu/g whereas the total coliforms and fecal coliforms count were found below 100 MPN/g and 10 MPN/g, respectively, which meet the acceptable limit specified by International Commission of Microbiological Specification for Food. The microbiological analysis of water and ice also complies with the specifications having TVAC < 20 cfu/mL, and total coliforms and fecal coliforms count were below the limit detection of the MPN method. Specific fish pathogens such as Salmonella sp. and V. cholerae were found absent in all the samples under the investigation. From this study, it can be concluded that the investigated frozen fishes were eligible for export purpose and also safe for human consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...