Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 8063, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202446

RESUMO

The FDA issued a warning that repeated and prolonged use of inhalational anaesthetics in children younger than 3 years may increase the risk of neurological damage. Robust clinical evidence supporting this warning is however lacking. A systematic review of all preclinical evidence concerning isoflurane, sevoflurane, desflurane and enflurane exposure in young experimental animals on neurodegeneration and behaviour may elucidate how severe this risk actually is PubMed and Embase were comprehensively searched on November 23, 2022. Based on predefined selection criteria the obtained references were screened by two independent reviewers. Data regarding study design and outcome data (Caspase-3 and TUNEL for neurodegeneration, Morris water maze (MWM), Elevated plus maze (EPM), Open field (OF) and Fear conditioning (FC)) were extracted, and individual effect sizes were calculated and subsequently pooled using the random effects model. Subgroup analyses were predefined and conducted for species, sex, age at anesthesia, repeated or single exposure and on time of outcome measurement. Out of the 19.796 references screened 324 could be included in the review. For enflurane there were too few studies to conduct meta-analysis (n = 1). Exposure to sevoflurane, isoflurane and desflurane significantly increases Caspase-3 levels and TUNEL levels. Further, sevoflurane and isoflurane also cause learning and memory impairment, and increase anxiety. Desflurane showed little effect on learning and memory, and no effect on anxiety. Long term effects of sevoflurane and isoflurane on neurodegeneration could not be analysed due to too few studies. For behavioural outcomes, however, this was possible and revealed that sevoflurane caused impaired learning and memory in all three related outcomes and increased anxiety in the elevated plus maze. For isoflurane, impaired learning and memory was observed as well, but only sufficient data was available for two of the learning and memory related outcomes. Further, single exposure to either sevoflurane or isoflurane increased neurodegeneration and impaired learning and memory. In summary, we show evidence that exposure to halogenated ethers causes neurodegeneration and behavioural changes. These effects are most pronounced for sevoflurane and isoflurane and already present after single exposure. To date there are not sufficient studies to estimate the presence of long term neurodegenerative effects. Nevertheless, we provide evidence in this review of behavioral changes later in life, suggesting some permanent neurodegenerative changes. Altogether, In contrast to the warning issued by the FDA we show that already single exposure to isoflurane and sevoflurane negatively affects brain development. Based on the results of this review use of sevoflurane and isoflurane should be restrained as much as possible in this young vulnerable group, until more research on the long term permanent effects have been conducted.


Assuntos
Anestésicos Inalatórios , Isoflurano , Éteres Metílicos , Animais , Isoflurano/efeitos adversos , Sevoflurano , Desflurano , Caspase 3 , Enflurano , Éteres , Anestésicos Inalatórios/efeitos adversos
2.
J Bacteriol ; 187(16): 5742-50, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16077121

RESUMO

Helicobacter pylori is a human gastric pathogen which is dependent on motility for infection. The H. pylori genome encodes a near-complete complement of flagellar proteins compared to model enteric bacteria. One of the few flagellar genes not annotated in H. pylori is that encoding FliK, a hook length control protein whose absence leads to a polyhook phenotype in Salmonella enterica. We investigated the role of the H. pylori gene HP0906 in flagellar biogenesis because of linkage to other flagellar genes, because of its transcriptional regulation pattern, and because of the properties of an ortholog in Campylobacter jejuni (N. Kamal and C. W. Penn, unpublished data). A nonpolar mutation of HP0906 in strain CCUG 17874 was generated by insertion of a chloramphenicol resistance marker. Cells of the mutant were almost completely nonmotile but produced sheathed, undulating polyhook structures at the cell pole. Expression of HP0906 in a Salmonella fliK mutant restored motility, confirming that HP0906 is the H. pylori fliK gene. Mutation of HP0906 caused a dramatic reduction in H. pylori flagellin protein production and a significant increase in production of the hook protein FlgE. The HP0906 mutant showed increased transcription of the flgE and flaB genes relative to the wild type, down-regulation of flaA transcription, and no significant change in transcription of the flagellar intermediate class genes flgM, fliD, and flhA. We conclude that the H. pylori HP0906 gene product is the hook length control protein FliK and that its function is required for turning off the sigma(54) regulon during progression of the flagellar gene expression cascade.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flagelos/fisiologia , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Biologia Computacional , Flagelos/ultraestrutura , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Helicobacter pylori/ultraestrutura , Microscopia Eletrônica , Dados de Sequência Molecular , Mutação , Salmonella enterica/genética , Transcrição Gênica/fisiologia
3.
FEMS Microbiol Lett ; 248(1): 47-55, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15946806

RESUMO

Motility is an essential colonization factor for the human gastric pathogen Helicobacter pylori. The H. pylori genome encodes most known flagellar proteins, although a number of key transcription regulators, chaperones, and structural proteins have not yet been identified. Using recently published yeast two-hybrid data we identified HP0958 as a potential motility-associated protein due to its strong interactions with RpoN (sigma(54)) and FliH, a flagellar ATPase regulator. HP0958 exhibits no sequence similarity to any published flagellar genes but contains a carboxy-terminal zinc finger domain that could function in nucleic acid or protein binding. We created a HP0958 mutant by inserting a chloramphenicol resistance marker into the gene using a PCR-based allelic exchange method and the resultant mutant was non-motile as measured by a BacTracker instrument. Electron microscopic analysis revealed that the HP0958 mutant cells were aflagellate and Western blot analysis revealed a dramatic reduction in flagellin and hook protein production. The HP0958 mutant also showed decreased transcription of flgE, flaB and flaA as well as the checkpoint genes flhA and flhF. Expression of flgM was increased relative to the wild-type and both rpoN and fliA (sigma(28)) expression were unchanged. We conclude that HP0958 is essential for normal motility and flagella production, and represents a novel flagellar component in the epsilon proteobacteria.


Assuntos
Proteínas de Bactérias/fisiologia , Helicobacter pylori/fisiologia , Locomoção/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flagelos/fisiologia , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...