Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e26657, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420420

RESUMO

Amnesia is a major health problem prevalent in almost every part of the world specifically in old age peoples. Vanillin analogues have played an important role in the field medicines. Some of them have been documented to be promising inhibitors of cholinesterases and could therefore, be used as antidepressant, anti-Alzheimer and as neuroprotective drugs. In this connection, the present study was designed to synthesize new vanillin analogues (SB-1 to SB-6) of varied biological potentials. The synthesized compounds were investigated as inhibitors against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes and as scavengers of DPPH and ABTS free radicals followed by behavioural antiamnesic evaluation in mice. The compounds; SB-1, SB-3, SB-4 and SB-6 more potently inhibited AChE with IC50 values of 0.078, 0.157, 0.108, and 0.014 µM respectively. The BChE was more potently inhibited by SB-3 with IC50 of 0.057 µM. Moreover, all of the tested compounds exhibited strong antioxidant potentials with promising results of SB-3 against DPPH with IC50 of 0.305 µM, while SB-5 was most active against ABTS with IC50 of 0.190 µM. The in-vivo studies revealed the improvement in memory deficit caused by scopolamine. Y-Maze and new object recognition test showed a considerable decline in cognitive dysfunctions. In Y-Maze test the spontaneous alteration of 69.44 ± 1% and 84.88 ± 1.35% for SB-1 and 68.92 ± 1% and 80.89 ± 1% for SB-3 at both test doses were recorded while during the novel object recognition test the Discrimination Index percentage of SB-1 was more pronounced as compared to standard drug. All compounds were found to be potent inhibitors of AChE, BChE, DPPH, and ABTS in vitro however, SB-1 and SB-3 were comparatively more potent. SB-1 was also more active in reclamation of memory deficit caused by scopolamine. SB-1 and SB-3 may be considered as excellent drug candidates for treating amnesia subjected to toxicological evaluations in other animal models.

2.
Neurochem Res ; 49(4): 980-997, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38170385

RESUMO

Diabetic neuropathic pain is one of the most devasting disorders of peripheral nervous system. The loss of GABAergic inhibition is associated with the development of painful diabetic neuropathy. The current study evaluated the potential of 3-Hydroxy-2-methoxy-6-methyl flavone (3-OH-2'MeO6MF), to ameliorate peripheral neuropathic pain using an STZ-induced hyperglycemia rat model. The pain threshold was assessed by tail flick, cold, mechanical allodynia, and formalin test on days 0, 14, 21, and 28 after STZ administration accompanied by evaluation of several biochemical parameters. Administration of 3-OH-2'-MeO6MF (1,10, 30, and 100 mg/kg, i.p) significantly enhanced the tail withdrawal threshold in tail-flick and tail cold allodynia tests. 3-OH-2'-MeO6MF also increased the paw withdrawal threshold in mechanical allodynia and decreased paw licking time in the formalin test. Additionally, 3-OH-2'-MeO6MF also attenuated the increase in concentrations of myeloperoxidase (MPO), thiobarbituric acid reactive substances (TBARS), nitrite, TNF-α, and IL 6 along with increases in glutathione (GSH). Pretreatment of pentylenetetrazole (PTZ) (40 mg/kg, i.p.) abolished the antinociceptive effect of 3-OH-2'-MeO6MF in mechanical allodynia. Besides, the STZ-induced alterations in the GABA concentration and GABA transaminase activity attenuated by 3-OH-2'-MeO6MF treatment suggest GABAergic mechanisms. Molecular docking also authenticates the involvement of α2ß2γ2L GABA-A receptors and GABA-T enzyme in the antinociceptive activities of 3-OH-2'-MeO6MF.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Flavonas , Neuralgia , Ratos , Animais , Hiperalgesia/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Estreptozocina , Simulação de Acoplamento Molecular , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/complicações , Analgésicos/farmacologia , Ácido gama-Aminobutírico/farmacologia , Flavonas/farmacologia , Flavonas/uso terapêutico , Biomarcadores
3.
J Biomol Struct Dyn ; : 1-16, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294707

RESUMO

Present research was designed to synthesize and characterize the flurbiprofen derivatives and to evaluate their analgesic, anti-inflammatory and gastro-protective activities in post-operative and chronic inflammatory pain models. Flurbiprofen derivatives were produced by using three-step processes involving esterification, hydrazide production, and schiff base, each of which modified a different carboxyl group. All the newly synthesized flurbiprofen derivatives (NS5-NS8) were characterized by 1H NMR,13C NMR,19F NMR and HR-ESI-MS, and the post-operative, inflammatory pain and ulcerogenic activities were determined in well-established in-vivo animal models. To evaluate post-operative and inflammatory pain, various doses of compounds [1, 3, 10, and 30 mg/kg (bwt)] were used, while their ulcerogenic potential was assessed at doses of 100 and 150 mg/kg (bwt). The incisional damage linked pain was significantly (p < 0.001) reduced by derivatives at different doses in both the acute and repeated tests with decreased response of phologistic agent-induced inflammation. The stomach histology and biochemical features demonstrate that the synthesized derivatives have no potential to cause ulcerogenicity as compared to aspirin and flurbiprofen. Furthermore, docking shows that the hydrazide moiety of these compounds is crucial in interacting within COX-2 binding site. Therefore, the synthesized compounds exhibit strong analgesic and anti-inflammatory effects and a low risk of causing ulcers. These attributes render them potentially valuable therapeutic agents for the treatment of pathological disorders associated with inflammation and pain.Communicated by Ramaswamy H. Sarma.

4.
RSC Adv ; 13(18): 12518-12528, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37091596

RESUMO

The discovery of post-operative, chronic inflammatory pain and any gastroulcerogenic potential using well-established animal models in vivo with new structures, high efficiency, broad-spectrum, and low toxicity has been the focus of medicinal chemists. In the present article, we are reporting the design and synthesis of various derivatives of ibuprofen by modifying the carboxyl group of ibuprofen using three steps reactions; esterification under microwave-irradiation in 10 minutes, hydrazide formation, and finally schiff's base reaction. Microwave-assisted esterification reaction can be employed to quickly explore and increase molecular diversity in synthetic chemistry. All of the newly synthesized compounds (NS1-NS4) were characterized by 1H-, 13C-NMR, and HR-ESI-MS spectroscopy and evaluated for post-operative, chronic inflammatory pain and any gastroulcerogenic potential using well-established animal models in vivo. The synthesized compounds at the tested doses of 100 and 150 mg kg-1 significantly attenuated the incisional-injury induced post-operative pain like condition and, also inhibited the phologistic agent induced inflammatory responses in both the acute and chronic testing paradigms. The gastric histological and biochemical parameters exhibited that the synthesized compounds were devoid of any ulcerogenic potential in comparison to aspirin and ibuprofen. These findings concluded that the synthesized ibuprofen derivatives exhibited profound analgesic, anti-inflammatory properties with reduced ulcerogenic potential and might be considered as effective therapeutic agents to treat pathological conditions associated with pain and inflammation.

5.
ACS Omega ; 8(8): 8052-8065, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36872974

RESUMO

Phthalimides have diverse bioactivities and are attractive molecules for drug discovery and development. Here, we explored new synthesized phthalimide derivatives (compounds 1-3) in improving memory impairment associated with Alzheimer's disease (AD), using in vitro and ex vivo acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition and in vivo models, including Y-maze test and novel object recognition test (NORT). Compounds 1-3 exhibited significant AChE activity with IC50 values of 10, 140, and 18 µM and BuChE with IC50 values of 80, 50, and 11 µM, respectively. All compounds 1-3 showed excellent antioxidant potential in DPPH and ABTS assays with IC50 values in the range of 105-340 and 205-350 µM, respectively. In ex vivo studies, compounds 1-3 also significantly inhibited both enzymes in a concentration-dependent manner along with significant antioxidant activities. In in vivo studies, compounds 1-3 reversed scopolamine-induced amnesia as indicated by a significant increase in the spontaneous alternation in the Y-maze test and an increase in the discrimination index in the NORT. Molecular docking was also conducted for compounds 1-3 against AChE and BuChE, which showed that compounds 1 and 3 have excellent binding with AChE and BuChE as compared to 2. These findings suggest that compounds 1-3 possess significant antiamnesic potential and may serve as useful leads to develop novel therapeutics for the symptomatic management and treatment of AD.

6.
Antioxidants (Basel) ; 12(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36671023

RESUMO

Feralolide, a dihydroisocoumarin, was isolated from the methanolic extract of resin of Aloe vera. The present study aims to investigate the in vivo ability of feralolide to ameliorate memory impairment induced by scopolamine using a battery of in vitro assays, such as antioxidant and acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition, and in vivo animal models, including elevated plus maze, Morris water maze, passive avoidance, and novel object recognition tests. Feralolide caused a concentration-dependent inhibition of AChE and BuChE enzymes with IC50 values of 55 and 52 µg/mL, respectively, and antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) with IC50 values 170 and 220 µg/mL, respectively. Feralolide reversed the scopolamine-induced amnesia as indicated by a dose-dependent decrease in escape latency, path length, and passing frequency in the Morris water maze test compared with the relevant control. The compound also significantly increased the discrimination index in a dose-dependent manner in NORT and decreased transfer latency in EPM, reflective of its memory-enhancing effect. Furthermore, feralolide also caused significant dose-dependent elevation in the step-down latency (SDL) in the passive avoidance test. The results indicated that feralolide might be a helpful memory restorative mediator in treating cognitive disorders such as Alzheimer's disease.

7.
Biomed Pharmacother ; 156: 113960, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411640

RESUMO

In the current investigation, 5-epi-incensole (3) and 5-epi-incensole acetate (5) were synthesized from the most potent anti-depressant constituents incensole (1) and incensole acetate (2) of Boswellia papyrifera Hochst. The resulting compounds were evaluated for their ability to ameliorate depressive symptoms in forced swim test (FST) and tail suspension test (TST) in chronic unpredictable mild stress (CUMS) induced depression paradigm. The results demonstrated that compounds 3 and 5 at the doses of 1 and 3 mg/kg administered for 28 days, significantly reduced the immobility time in FST and TST and were devoid of any effect on locomotor activity in the open field test (OFT). Both compounds 3 and 5 also reversed CUMS-induced reduction in the weight of animals and aversion in sucrose preference. The tested compounds also inhibited Monoamine oxidase-A (MAO) enzyme and increased the levels of brain noradrenaline (NA) and 5-Hydroxytryptamine (5-HT), decreased plasma corticosterone and pro-inflammatory cytokines including TNF-α, IL-6 in hippocampal homogenates. Compounds 3 and 5 also significantly reduced the increased lipid peroxidation and nitrite levels; decreased glutathione levels, and catalase activities in mice undergoing CUMS protocol. The binding mode of compounds 3 and 5 was predicted at the monoamine oxidase substrate binding site by molecular docking having docking scores of > -6 kcal/mol. Taken together these data revealed that compounds 3 and 5 exerted antidepressant-like effects in chronic unpredictable mild stress-induced depression paradigm and are likely mediated via modulating the central oxidative stress, MAO-A activity with a consequent increase in brain NA and 5-HT levels in inflammatory pathways.


Assuntos
Doença Enxerto-Hospedeiro , Serotonina , Animais , Camundongos , Depressão/tratamento farmacológico , Simulação de Acoplamento Molecular , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Norepinefrina , Monoaminoxidase
8.
Bioorg Chem ; 126: 105900, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35671644

RESUMO

Encouraged by the potent anti-depression activities of incensole (1) and incensole acetate (2) isolated from the resin of Boswellia papyrifera in our previous work, different derivatives of 1 and 2 were synthesized in the present study. The reaction of 1 with m-CPBA afforded the mono-epoxide derivative 3a, while the same reaction with 2 led to three different epoxide derivatives 3a, 3b, and 3c. Oxidation of 1 with PCC to get compound 3b, however along with the target 3b, the reaction gave three interesting side products (3c-3e). Oxime (3b-1) resulted from the reaction of 3b with hydroxylamine hydrochloride in pyridine, while epoxidation of 2 generate three epoxide products (4a-4c). The structures of all products were unambiguously confirmed using NMR and Mass spectrometry. Compounds 3a-e and 4a-c (0.1-3 mg/kg, i.p.) demonstrated promising anti-depression activities in classical mouse models of depression of FST and TST. The results showed that compounds 3a-e and 4a-c (0.1-3 mg/kg, i.p.) caused dose dependent reduction in immobility time compared to the vehicle control, with 3c-3e and 4b-4c demonstrating higher potency and efficacy. The findings of the open field test excluded the motor effects of these compounds, thus further confirming their anti-depression activity. Preliminary investigation into their mechanism of action using GABA antagonist, PTZ and molecular docking has predicted that compounds 3e and 4c bind at the GABA binding site of GABAA receptor to produce GABAergic effects. Furthermore, the promising anti-depression potency of compounds 1 and 2 and their derivatives make them lead compounds for drug discovery.


Assuntos
Boswellia , Franquincenso , Animais , Boswellia/química , Diterpenos , Compostos de Epóxi , Camundongos , Simulação de Acoplamento Molecular , Receptores de GABA-A
9.
Biomed Pharmacother ; 147: 112669, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35121344

RESUMO

ß-Boswellic acid (ß-BA) and 11-keto-ß-boswellic acid (ß-KBA) are crucial bioactive compounds, mostly isolated from frankincense. These compounds are known for their potent anticancer and anti-inflammatory activities. Herein, we have explored the complete anti-diabetic potential of ß-BA and ß-KBA with detailed parameters. This research revealed that treatment with ß-BA and ß-KBA at a dose of 1, 2, and 10 mg/kg body weight for 21 days significantly improved body weight loss, water consumption, and specifically the concentration of blood glucose level (BGL) in diabetic animals, which indicated that the ß-BA and ß-KBA possess strong anti-diabetic activities. Serum total superoxide dismutase (SOD) and malondialdehyde (MDA) assays were also performed to evaluate the antioxidant effects. The biochemical analysis revealed that these compounds improve an abnormal level of several biochemical parameters like serum lipid values including total cholesterol (TC), triacylglycerol (TG), low-density lipoprotein cholesterol (LDL-C) to a normal level and the high-density lipoprotein cholesterol level (HDL-C). To understand the mechanism of action of ß-BA and ß-KBA, their most probable biological targets were searched through the inverse docking approach. Our computational analysis reflects that among other probable targets, the Dipeptidyl peptidase 4 (DPP-4) enzyme could be one of the possible binders of ß-BA and ß-KBA to produce their anti-diabetic activities. These in-silico results were validated by an in-vitro experiment. It indicates that the anti-diabetic effects of ß-BA and ß-KBA are produced by the inhibition of DDP-4. Thus, these anti-diabetic, antioxidant, and anti-hyperlipidemic effects of ß-BA and ß-KBA suggest these compounds as potential therapeutics for diabetic conditions.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Animais , Glicemia/efeitos dos fármacos , Boswellia , Dipeptidil Peptidase 4/farmacologia , Relação Dose-Resposta a Droga , Lipídeos/sangue , Malondialdeído/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Estreptozocina , Superóxido Dismutase/efeitos dos fármacos , Triterpenos/administração & dosagem , Redução de Peso/efeitos dos fármacos
11.
Biomed Pharmacother ; 143: 112131, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34560545

RESUMO

Despite a large number of liver disorders, clinically useful drugs are scarce. Moreover, the available therapies are facing the challenges of efficacy and safety. Commipohora mukul has been used in folk medicine globally for millennia for the treatment of several ailments. The current study was designed to evaluate the possible hepatoprotective activity of Myrrhanone B (MN) and Myrrhanol B (ML) isolated from C. mukul using an animal model. The animals (Swiss albino mice) were segregated into seven groups, each comprising six mice. The first group was treated with normal saline at a dose of 1 ML/kg daily intraperitoneally (i.p.) for one week. The second group was treated with acetaminophen (APAP) (250 mg/kg, i.p.), it was taken as a negative control. Group 3 was used as a positive control (treated with Silymarin (100 mg/kg, i.p.)). While groups 4-7 were used as experimental groups (termed as groups II to IV), which were treated with ML and MN at a dose of 0.6 mg/kg, and 1.2 mg/kg (i.p.) for one week. Subsequently, blood serum and liver tissue samples were collected for biochemical and histopathological analysis. Both compounds significantly improved the levels of liver biomarkers including aspartate transaminase (AST), alkaline phosphatase (ALP), bilirubin, lactate dehydrogenase (LDH), and alanine transaminase (ALT) as compared to the normal saline-treated group in APAP-induced hepatotoxic mice. Moreover, both compounds significantly modulated the expression of oxidative biomarkers including superoxide dismutase (SOD), reduced glutathione (GSH), and catalase (CAT) at the same doses. Additionally, ML and MN showed a remarkable improvement in histological changes with only mild inflammation, mild hemorrhage, no necrosis, and no pyknosis as compared to the control groups. In conclusion, MN and ML exhibited significant hepatoprotective effects in the animal model used in this study.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Commiphora , Fígado/efeitos dos fármacos , Resinas Vegetais/farmacologia , Triterpenos/farmacologia , Acetaminofen , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Commiphora/química , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Resinas Vegetais/isolamento & purificação , Triterpenos/isolamento & purificação
12.
Phytomedicine ; 90: 153646, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34280827

RESUMO

BACKGROUND: Gamma-aminobutyric acid A (GABAA) receptors have been implicated in anxiety and epileptic disorders. HYPOTHESIS/PURPOSE: This study aimed to investigate the effects of stigmasterol, a plant sterol (phytosterol) isolated from Artemisia indica Linn on neurological disorders. METHODS: Stigmasterol was evaluated on various recombinant GABAA receptor subtypes expressed in Xenopus laevis oocytes and its anxiolytic and anticonvulsant potential was assessed using the elevated plus maze (EPM), light-dark box (LDB) test, and pentylenetetrazole- (PTZ-) induced seizure paradigms. Furthermore, computational modeling of α2ß2γ2L, α4ß3δ, and α4ß3 subtypes was performed to gain insights into the GABAergic mechanism of stigmasterol. For the first time, a model of GABAδ subtype was generated. Stigmasterol was targeted to all the binding sites (neurotransmitters, positive and negative modulator binding sites) of GABAA α2ß2γ2L, α4ß3, and α4ß3δ complexes by in silico docking. RESULTS: Stigmasterol enhanced GABA-induced currents at ternary α2ß2γ2L, α4ß3δ, and binary α4ß3 GABAAR subtypes. The potentiation of GABA-induced currents at extrasynaptic α4ß3δ was significantly higher compared to the binary α4ß3 subtype, indicating that the δ subunit is important for efficacy. Stigmasterol was found to be a potent positive modulator of the extrasynaptic α4ß3δ subtype, which was also confirmed by computational analysis. The computational analysis reveals that stigmasterol preferentially binds at the transmembrane region shared by positive modulators or a binding site constituted by the M2-M3 region of α4 and M1-M2 of ß3 at α4ß3δ complex. In in vivo studies, Stigmasterol (0.5-3.0 mg/kg, i.p.) exerted significant anxiolytic and anticonvulsant effects in an identical manner of allopregnanolone, indicating the involvement of a GABAergic mechanism. CONCLUSION: To our knowledge, this is the first study reporting the positive modulation of GABAA receptors, anxiolytic and anticonvulsant potential of stigmasterol. Thus, stigmasterol is considered to be a candidate steroidal drug for the treatment of neurological disorders due to its positive modulation of GABA receptors.


Assuntos
Ansiolíticos , Anticonvulsivantes/farmacologia , Moduladores GABAérgicos/farmacologia , Estigmasterol , Animais , Ansiolíticos/farmacologia , Oócitos , Receptores de GABA-A , Convulsões/tratamento farmacológico , Estigmasterol/farmacologia , Xenopus laevis
13.
Naunyn Schmiedebergs Arch Pharmacol ; 394(5): 929-940, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33221972

RESUMO

Cisplatin-induced peripheral neuropathic pain is a common adverse effect of chemotherapy. The present study evaluated the effects of 2'-chloro-6-methylflavone (2'-Cl-6MF) at recombinant α1ß2γ2L, α2ß1-3γ2L, and α3ß1-3γ2L GABA-A receptor subtypes expressed in Xenopus oocytes and subsequently evaluated its effectiveness in cisplatin-induced neuropathic pain. The results showed that 2'-Cl-6MF potentiated GABA-elicited currents at α2ß2/3γ2L and α3ß2/3γ2L GABA-A receptor subtypes. The potentiation was blocked by the co-application of flumazenil (a benzodiazepine (BDZs) site antagonist). In behavioral studies, mechanical allodynia was induced by intraplantar injection of cisplatin (40 µg/paw) in Sprague Dawley rats, and behavioral assessments were made 24 h after injection. 2'-Cl-6MF (1, 10, 30, and 100 mg/kg, i.p.), was administered 1 h before behavioral evaluation. Administration of 2'-Cl-6MF (30 and 100 mg/kg, i.p) significantly enhanced the paw withdrawal threshold and decreased mechanical allodynia. The standard drugs, gabapentin (GBP) at the dose of 70 mg/kg, and HZ 166 (16 mg/kg), i.p. also significantly enhanced the paw withdrawal threshold in mechanical allodynia. Pretreatment with pentylenetetrazole (PTZ) (15 mg/kg, i.p.) and flumazenil reversed the antinociceptive effect of 2'-Cl-6MF in mechanical allodynia indicating GABAergic mechanisms. Moreover, the binding mechanism of 2'-Cl-6MF was rationalized by in silico modeling tools. The 3D-coordinates of α2ß2γ2L and α2ß3γ2L were generated after homology modeling of the α2 subtype and 2'-Cl-6MF was at predicted binding sites of the developed models. The α2 model was compared with the α1 and α3 subunits via structural and sequence alignment. Molecular docking depicted that the compound binds efficiently at the neuromodulator binding site of the receptors. The findings of this study revealed that 2'-Cl-6MF ameliorated the manifestations of cisplatin-induced neuropathic pain in rats. Furthermore, we also conclude that GABAergic mechanisms may contribute to the antinociceptive effect of 2'-Cl-6MF. The molecular docking studies also confirm the involvement of the BDZs site of GABA-A receptors. It was observed that Ile230 of α2 stabilize the chlorophenyl ring of 2'-Cl-6MF through hydrophobic interactions, which is replaced by Val203 in α1 subunit. However, the smaller side chain of Val203 does not provide hydrophobic interaction to the compound due to high conformational flexibility of α1 subunit.


Assuntos
Cisplatino/toxicidade , Flavonas/farmacologia , Neuralgia/prevenção & controle , Receptores de GABA-A/metabolismo , Analgésicos/administração & dosagem , Analgésicos/farmacologia , Animais , Antineoplásicos/toxicidade , Benzodiazepinas/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Flavonas/administração & dosagem , Gabapentina/farmacologia , Hiperalgesia/tratamento farmacológico , Imidazóis/farmacologia , Masculino , Simulação de Acoplamento Molecular , Neuralgia/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Xenopus laevis
14.
BMC Complement Med Ther ; 20(1): 143, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32397979

RESUMO

BACKGROUND: Elaeagnus umbellata is abundantly found in Himalayan regions of Pakistan which is traditionally used to treat various health disorders. However, the experimental evidence supporting the anti-amnesic effect is limited. Therefore the study was aimed to evaluate the prospective beneficial effect of E. umbellata on learning and memory in mice. OBJECTIVES: To assess neuroprotective and anti-amnesic effects of E. umbellata fruit extracts and isolated compounds on the central nervous system. METHODS: Major phytochemical groups present in methanolic extract of E. umbellata were qualitatively determined. The total phenolic and flavonoid contents were also determined in extract/fractions of E. umbellata. On the basis of in vitro promising anticholinesterases (AChE & BChE) and antioxidant activities observed for CHF. Ext and isolated compound-I (Chlorogenic acid = CGA), they were further evaluated for learning and memory in normal and scopolamine-induced cognitive impairment in mice using memory behavioral tests such as the Y maze and Novel object recognition using standard procedures. The test sample were further assessed for in vivo anticholinesterases (AChE & BChE) and DPPH free radical scavenging activities in mice brain sample and finally validated by molecular docking study using GOLD software. RESULTS: The extract/fractions and isolated compounds were tested for their anticholinesterase and antioxidant potentials. The CHF. Ext and CGA showed maximum % inhibition of tested cholinesterases and free radicals. The CHF. Ext and CGA reversed the effects of scopolamine in mice. The CHF. Ext and CGA significantly increased the alternate arm returns and % spontaneous alteration performance while escape latency times (second) significantly decreased in Y maze test. The CHF. Ext and CGA significantly increased the time spent with novel object and also increased the discrimination index in the Novel object recognition test. Furthermore, molecular docking was used to validate the mechanism of cholinesterases inhibition of isolated compounds. CONCLUSION: The data obtained from behavioral and biochemical studies (AChE/BChE and DPPH/ABTS inhibition) have shown that E. umbellata possessed significant memory enhancing potency. These results suggest that E. umbellata extract possess potential antiamnesic effects and amongst the isolated compounds, compound I could be more effective anti-amnesic therapeutics. However, further studies are needed to identify the exact mechanism of action.


Assuntos
Amnésia/tratamento farmacológico , Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Amnésia/induzido quimicamente , Animais , Modelos Animais de Doenças , Elaeagnaceae , Camundongos , Paquistão , Escopolamina
15.
ACS Chem Neurosci ; 11(3): 344-355, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31898891

RESUMO

Nicotinic acetylcholine (nACh) receptors are pentameric ligand-gated ion channels that mediate fast synaptic transmission. The α4ß2 nACh receptor is highly expressed in the brain and exists in two functional stoichiometries: the (α4)2(ß2)3 and (α4)3(ß2)2 that differ by an ACh-binding site at the α4-α4 interface of (α4)3(ß2)2 receptors. Methyllycaconitine (MLA) is an nACh receptor antagonist, and while potent at both α7 and α4ß2 nACh receptors, it has a higher selectivity for the α7 nACh receptor. The anthranilate-succinimide ester side-chain is important for its activity and selectivity. Here we identify a simplified MLA analogue that contains only the A and E ring skeleton of MLA, AE succinimide, that binds close to the channel lumen to display insurmountable inhibition at α4ß2 nACh receptors. Although inhibition by AE succinimide was found to be voltage-dependent indicating a possible pore channel blocker, substituted-cysteine accessibility experiments indicated it did not bind between 2'-16' region of the channel pore. Instead, we found that upon binding and in the presence of ACh, there is a conformational change to the channel membrane that was identified when the compound was assessed against (α4 V13'C)ß2 nACh receptors. It was found that in the 3:2 stoichiometry the two adjacent α4 subunits containing 13' cysteine mutations formed a disulfide bond and occluded ion conductance. This was reversed by treatment with the reducing agent, dithiothreitol. Thus, AE succinimide has a different mechanism of inhibition to both MLA and other AE analogues, such as AE bicyclic alcohol, in that upon binding to an as yet unidentified site, AE succinimide in the presence of ACh induces a conformational change to the channel that generates a ligand-bound closed state.


Assuntos
Aconitina/análogos & derivados , Potenciais da Membrana/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Succinimidas/farmacologia , Acetilcolina/metabolismo , Aconitina/farmacologia , Animais , Sítios de Ligação/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Subunidades Proteicas/metabolismo , Receptores Nicotínicos/metabolismo , Succinimidas/química , Xenopus laevis/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
16.
Med Chem ; 16(8): 1007-1021, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31702507

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, with approximately 29 million older people suffering from this disease worldwide. This number is expected to become triple by 2050. AD is a complex and multifactorial neurodegenerative condition, characterized by complex pathology including oxidative stress, formation of aggregates of amyloid and tau, enhanced immune responses, metal deposition and disturbances in cholinesterase enzymes. There is no effective pharmacological treatment for combating the disease to date. The ineffectiveness of current pharmacological interventions in AD has led scientists to search for more safe and effective alternative therapeutic agents. Thus, natural products have become an important avenue for drug discovery in AD research. In this regard, polyphenols are natural products that have been shown to be effective in the modulation of the type of neurodegenerative changes seen in AD, suggesting a possible therapeutic role. The present review focuses on the chemistry of polyphenols, clinical studies for evaluating polyphenols as effective alternatives in AD treatment, cellular and molecular aspects of polyphenols in improving cognitive deficits and the current challenges and futuristic approaches to use polyphenols as safe and effective therapeutic agents in AD treatment.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Polifenóis/farmacologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Humanos , Fármacos Neuroprotetores/química , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/química , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/imunologia , Proteínas tau/antagonistas & inibidores , Proteínas tau/imunologia , Proteínas tau/metabolismo
17.
Front Immunol ; 10: 581, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972073

RESUMO

Triterpenes possess anti-inflammatory and anti-nociceptive effects. In this study anti-inflammatory activities of Asparacosin A were evaluated' using in-vitro cyclooxygenases 1 and 2 (COX-1/2) inhibition assays. Moreover, anti-nociceptive activities were assessed in-vivo by carrageenan-induced paw edema test, xylene-induced ear edema tests, and acetic acid-induced writhing and formalin tests. Additionally molecular docking was conducted to elucidate the binding mechanism of the compound and to correlate the in-vitro findings with the in-silico data. Oral administration of Asparacosin A at the doses of 10, 20, and 40 mg/kg induced significant anti-inflammatory effects (*p < 0.05, **p < 0.01, and ***p < 0.001) in a dose-dependent manner in both models. Asparacosin A also inhibited the human recombinant COX-2 enzyme and caused a dose-dependent decrease in the levels of TNF-α, IL-1ß, and PGE2 in the carrageenan-induced paws. Moreover, Asparacosin A displayed significant anti-nociceptive effects (*p < 0.05, **p < 0.01, ***p < 0.001) at the doses of 10, 20, and 40 mg/kg in acetic-acid induced writhing test. However, in formalin test, Asparacosin A (10-40 mg/kg, p.o) produced anti-nociceptive effects only in the late phase, similar to the effect observed with the reference drug celecoxib (50 mg/kg, p.o). Molecular docking was carried out on both COX-1 and COX-2 structures which revealed that Asparacosin A targets allosteric binding site similar to the binding mode of the selective COX inhibitor. In conclusion, Asparacosin A exhibits anti-inflammatory and peripheral anti-nociceptive activities which are likely mediated via inhibition of COX-2 enzyme and inflammatory cytokines. Furthermore, Asparacosin A can serve as a model to obtain new and more selective potent anti-inflammatory and anti-nociceptive drugs.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Citocinas/antagonistas & inibidores , Espirostanos/farmacologia , Animais , Ciclo-Oxigenase 2/química , Camundongos , Simulação de Acoplamento Molecular , Ratos , Ratos Sprague-Dawley , Espirostanos/toxicidade
18.
Phytochemistry ; 163: 58-74, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31015070

RESUMO

In the course of our continuing exploration for novel bioactive lead compounds (s) from the species Boswellia, we have recently reported incensole derivatives isolated from Boswellia papyrifera Hochst. Given the known antidepressant-like effects of incensole and incensole acetate, we herein present that the low dose intraperitoneal administration of incensole derivatives, namely, incensfuran and incensone, showed significant antidepressant-like effects in the forced swim test (FST) and tail suspension test (TST). Furthermore, these compounds were evaluated for their anxiolytic potential in the elevated plus maze (EPM) and light dark box (LDB) tests and anticonvulsant effects in pentylenetetrazole (PTZ)-induced seizure tests. In the EPM test, administration of these compounds led to dose-dependent increases in open arm entries and in the time spent in EPM open arms. Similar results were obtained in the LDB test, wherein compounds these caused significant increases in the number of transitions between lit and dark compartments and the time spent in the lit compartment. The anxiolytic-like effects in the EPM were not reversed by pretreatment with flumazenil, whereas PTZ and bicuculline (BIC) completely abolished the anxiolytic effects, showing the involvement of the non-benzodiazepine binding sites of GABAA receptors. All four compounds induced significantly elevated brain GABA levels, indicating the involvement of a GABAergic mechanism. Additionally, molecular docking was conducted to elucidate the mode of action for the anxiolytic and anticonvulsant effects of these derivatives. Moreover, these compounds also possess drug-like properties and excellent ADMET profiles.


Assuntos
Antidepressivos/farmacologia , Produtos Biológicos/farmacologia , Diterpenos/farmacologia , Simulação de Acoplamento Molecular , Doenças do Sistema Nervoso/tratamento farmacológico , Receptores de GABA-A/metabolismo , Animais , Antidepressivos/administração & dosagem , Antidepressivos/química , Comportamento Animal/efeitos dos fármacos , Produtos Biológicos/administração & dosagem , Produtos Biológicos/química , Diterpenos/administração & dosagem , Diterpenos/química , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Conformação Molecular , Pentilenotetrazol , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
19.
Biol Futur ; 70(4): 295-300, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34554543

RESUMO

INTRODUCTION: Natural products derived from medicinal plants provide beneficial cancer chemotherapeutic drugs. Bioactive constituents from plants are explored for their anticancer properties. METHODS: Three known compounds (deacetylbaccatin III, tasumatrol B, and taxawallin J) were isolated from Taxus wallichiana. Compounds were screened against four cancer cell lines, such as eA498, HepG2, NCI-H226, and MDR 2780AD. Cytotoxic activity was evaluated using MTT assay against cancer cell lines. RESULTS: Tasumatrol B showed good cytotoxic activity conducted for the improvement of inhibiting potential of these compounds against the cancer drug target protein (EGFR tyrosine kinase enzyme). The docking study showed that all compounds have binding affinities and interaction profile with the receptor tyrosine kinase. DISCUSSION: The study suggests that these compounds could be used for the discovery of novel inhibitors against the target receptors for the treatment of cancer.

20.
BMC Complement Altern Med ; 18(1): 332, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545352

RESUMO

BACKGROUND: The fruit of Elaeagnus umbellata has high medicinal values and is an excellent source of phytochemicals. This study was aimed to evaluate the antioxidant, enzyme inhibitory and antidiabetic potential of Elaeagnus umbellata. METHODS: The antioxidant potential of the crude extract and subfractions of E. umbellata fruit were determined using DPPH (2, 20-diphenyl-1-picrylhydrazyl) and ABTS (2, 2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) assays. The enzyme inhibitory potentials of extracts against α-amylase and α-glucosidase enzymes were also determined. The in vivo anti-hyperglycemic effects of the extract in STZ-induced type 2 diabetes were determined using Sprague Dawley adult rats. HPLC system (Agilent 1260) was used for the identification of bioactive compounds present in extracts. Molecular docking was used to identify and compare the interaction between the compounds (active constituents) and standard inhibitor acarbose with the α-amylase and α-glucosidase active sites. RESULTS: The chloroform, ethyl acetate, and butanol fractions showed significant antioxidant potential with IC50 values of 40, 45 and 60 µg/mL against DPPH and 57, 70 and 120 µg/mL against ABTS free radicals respectively. The chloroform and ethyl acetate were highly active against α-amylase and α-glucosidase (IC50 values 58 and 200 µg/ml against α-amylase 60 and 140 µg/ml against α-glucosidase. The crude extract, chloroform, and ethyl acetate fractions were more potent in controlling the hyperglycemia in STZ-induced type 2 diabetes in rats and considerable reduction of glucose level was observed compared to the non-treated group. Furthermore, the extracts were also found useful in controlling the secondary complications associated with type 2 diabetes mellitus which was evident from the observed substantial reduction in the blood level of serum glutamate oxaloacetate transaminase, serum glutamate pyruvate transaminase, alkaline phosphatase, total cholesterol, low-density lipoproteins, and triglycerides. The molecular docking approach indicated the favorable inhibitory interaction between the docked compounds and the active sites of the α-amylase and α-glucosidase. All docked compounds occupied the same binding site as occupied by acarbose. CONCLUSION: It was concluded that E. umbellata can be used in the treatment of type 2 diabetes and oxidative stress. The extracts were also found to be effective in relieving the secondary complications associated with type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Elaeagnaceae/química , Hipoglicemiantes , Extratos Vegetais , Animais , Benzotiazóis , Compostos de Bifenilo , Glicemia/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Picratos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Estreptozocina , Ácidos Sulfônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...