Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 41(24): e111132, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36345783

RESUMO

The cerebral cortex contains billions of neurons, and their disorganization or misspecification leads to neurodevelopmental disorders. Understanding how the plethora of projection neuron subtypes are generated by cortical neural stem cells (NSCs) is a major challenge. Here, we focused on elucidating the transcriptional landscape of murine embryonic NSCs, basal progenitors (BPs), and newborn neurons (NBNs) throughout cortical development. We uncover dynamic shifts in transcriptional space over time and heterogeneity within each progenitor population. We identified signature hallmarks of NSC, BP, and NBN clusters and predict active transcriptional nodes and networks that contribute to neural fate specification. We find that the expression of receptors, ligands, and downstream pathway components is highly dynamic over time and throughout the lineage implying differential responsiveness to signals. Thus, we provide an expansive compendium of gene expression during cortical development that will be an invaluable resource for studying neural developmental processes and neurodevelopmental disorders.


Assuntos
Células-Tronco Neurais , Neurônios , Animais , Camundongos , Diferenciação Celular , Linhagem da Célula/genética , Córtex Cerebral , Células-Tronco Embrionárias , Neurogênese/genética , Neurônios/metabolismo
2.
Life Sci Alliance ; 5(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35580987

RESUMO

MAPK inhibitors (MAPKi) remain an important component of the standard of care for metastatic melanoma. However, acquired resistance to these drugs limits their therapeutic benefit. Tumor cells can become refractory to MAPKi by reactivation of ERK. When this happens, tumors often become sensitive to drug withdrawal. This drug addiction phenotype results from the hyperactivation of the oncogenic pathway, a phenomenon commonly referred to as oncogene overdose. Several feedback mechanisms are involved in regulating ERK signaling. However, the genes that serve as gatekeepers of oncogene overdose in mutant melanoma remain unknown. Here, we demonstrate that depletion of the ERK phosphatase, DUSP4, leads to toxic levels of MAPK activation in both drug-naive and drug-resistant mutant melanoma cells. Importantly, ERK hyperactivation is associated with down-regulation of lineage-defining genes including MITF Our results offer an alternative therapeutic strategy to treat mutant melanoma patients with acquired MAPKi resistance and those unable to tolerate MAPKi.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Fosfatases de Especificidade Dupla/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Oncogenes , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética
3.
Nature ; 597(7874): 87-91, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34433966

RESUMO

Studies based on single cells have revealed vast cellular heterogeneity in stem cell and progenitor compartments, suggesting continuous differentiation trajectories with intermixing of cells at various states of lineage commitment and notable degrees of plasticity during organogenesis1-5. The hepato-pancreato-biliary organ system relies on a small endoderm progenitor compartment that gives rise to a variety of different adult tissues, including the liver, pancreas, gall bladder and extra-hepatic bile ducts6,7. Experimental manipulation of various developmental signals in the mouse embryo has underscored important cellular plasticity in this embryonic territory6. This is reflected in the existence of human genetic syndromes as well as congenital malformations featuring multi-organ phenotypes in liver, pancreas and gall bladder6. Nevertheless, the precise lineage hierarchy and succession of events leading to the segregation of an endoderm progenitor compartment into hepatic, biliary and pancreatic structures have not yet been established. Here we combine computational modelling approaches with genetic lineage tracing to accurately reconstruct the hepato-pancreato-biliary lineage tree. We show that a multipotent progenitor subpopulation persists in the pancreato-biliary organ rudiment, contributing cells not only to the pancreas and gall bladder but also to the liver. Moreover, using single-cell RNA sequencing and functional experiments we define a specialized niche that supports this subpopulation in a multipotent state for an extended time during development. Together these findings indicate sustained plasticity underlying hepato-pancreato-biliary development that might also explain the rapid expansion of the liver while attenuating pancreato-biliary growth.


Assuntos
Sistema Biliar/citologia , Linhagem da Célula , Fígado/citologia , Pâncreas/citologia , Nicho de Células-Tronco , Animais , Sistema Biliar/embriologia , Sistema Biliar/metabolismo , Linhagem da Célula/genética , Rastreamento de Células , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Fígado/embriologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Pâncreas/embriologia , Pâncreas/metabolismo , RNA-Seq , Transdução de Sinais , Análise de Célula Única , Nicho de Células-Tronco/genética
4.
Sci Rep ; 10(1): 4625, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170161

RESUMO

Neural stem cells (NSCs) generate neurons of the cerebral cortex with distinct morphologies and functions. How specific neuron production, differentiation and migration are orchestrated is unclear. Hippo signaling regulates gene expression through Tead transcription factors (TFs). We show that Hippo transcriptional coactivators Yap1/Taz and the Teads have distinct functions during cortical development. Yap1/Taz promote NSC maintenance and Satb2+ neuron production at the expense of Tbr1+ neuron generation. However, Teads have moderate effects on NSC maintenance and do not affect Satb2+ neuron differentiation. Conversely, whereas Tead2 blocks Tbr1+ neuron formation, Tead1 and Tead3 promote this early fate. In addition, we found that Hippo effectors regulate neuronal migration to the cortical plate (CP) in a reciprocal fashion, that ApoE, Dab2 and Cyr61 are Tead targets, and these contribute to neuronal fate determination and migration. Our results indicate that multifaceted Hippo signaling is pivotal in different aspects of cortical development.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/genética , Linhagem Celular , Córtex Cerebral/metabolismo , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/metabolismo , Proteínas da Matriz Extracelular/genética , Feminino , Via de Sinalização Hippo , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais , Especificidade de Órgãos , Proteínas Serina-Treonina Quinases/genética , Proteína Reelina , Serina Endopeptidases/genética , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética
5.
Brief Bioinform ; 17(4): 616-27, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26510443

RESUMO

One of the major challenges in biology concerns the integration of data across length and time scales into a consistent framework: how do macroscopic properties and functionalities arise from the molecular regulatory networks-and how can they change as a result of mutations? Morphogenesis provides an excellent model system to study how simple molecular networks robustly control complex processes on the macroscopic scale despite molecular noise, and how important functional variants can emerge from small genetic changes. Recent advancements in three-dimensional imaging technologies, computer algorithms and computer power now allow us to develop and analyse increasingly realistic models of biological control. Here, we present our pipeline for image-based modelling that includes the segmentation of images, the determination of displacement fields and the solution of systems of partial differential equations on the growing, embryonic domains. The development of suitable mathematical models, the data-based inference of parameter sets and the evaluation of competing models are still challenging, and current approaches are discussed.


Assuntos
Organogênese , Simulação por Computador , Modelos Biológicos , Biologia de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...