Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(2): 1303-1309, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36456770

RESUMO

BACKGROUND: Metastasis is a devastating complication of breast cancer. Cancer relapse and metastasis are associated with cancer stem cells. CicBIRC6 is a circular RNA that is proposed to be involved in the stemness of stem cells. In breast cancer, metastatic tumor cells have higher stem cell properties. In the present study, we evaluate the expression of cicBIRC6 in these cells. METHODS: After the development of a syngeneic animal model of TNBC, primary breast cancer cells named 4T1T were isolated from the tumor mass. Highly metastatic tumor cells named 4T1B and 4T1L were isolated and expanded from brain metastasis lesions and lungs of cancerous mice respectively. Sphere formation ability in metastatic and primary tumor cells was evaluated separately. The quantitative real-time polymerase chain reaction was performed to analyze the expression of cicBIRC6 in primary and metastatic tumor cells. RESULTS: Our data revealed that, sphere formation ability among metastatic tumor cells was significantly higher. Surprisingly expression of cicBIRC6 was significantly upregulated in these metastatic tumor cells. In comparison with 4T1T, cicBIRC6 was upregulated 5.7 and 3.5 times in 4T1B and 4T1L respectively. CONCLUSION: These findings provided important insights regarding the molecular properties of metastatic tumor cells and can be used for designing a targeted therapeutic strategy in combat with these cells.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/genética , Regulação para Cima , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo
2.
Acta Neurol Belg ; 122(4): 865-869, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35690992

RESUMO

The related neurologic complications of SARS-CoV-2 infection in COVID-19 patients and survivors comprise symptoms including depression, anxiety, muscle pain, dizziness, headaches, fatigue, and anosmia/hyposmia that may continue for months. Recent studies have been demonstrated that chemokines have brain-specific attraction and effects such as chemotaxis, cell adhesion, modulation of neuroendocrine functions, and neuroinflammation. CCL11 is a member of the eotaxin family that is chemotactic agents for eosinophils and participate in innate immunity. Eotaxins may exert physiological and pathological functions in the central nerve system, and CCL11 may induce neuronal cytotoxicity effects by inducing the production of reactive oxygen species (ROS) in microglia cells. Plasma levels of CCL11 elevated in neuroinflammation and neurodegenerative disorders. COVID-19 patients display elevations in CCL11 levels. As CCL11 plays roles in physiosomatic and neuroinflammation, analyzing the level of this chemokine in COVID-19 patients during hospitalization and to predicting post-COVID-19-related neurologic complications may be worthwhile. Moreover, using chemokine modulators may be helpful in lessening the neurologic complications in such patients.


Assuntos
COVID-19 , Quimiocina CCL11 , Doenças Neuroinflamatórias , COVID-19/complicações , COVID-19/metabolismo , Quimiocina CCL11/metabolismo , Humanos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/virologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...