Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chem Biol Interact ; 368: 110217, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252702

RESUMO

Cognitive impairment is one of the major complications of chronic kidney disease (CKD). The present study aims to evaluate the protective effects of carbon monoxide (CO) and hydrogen sulfide (H2S) and their interactions on CKD-induced cognitive deficits by considering the Nrf2/HO-1 signaling pathway. Sixty rats were divided into six experimental groups: sham, five-sixth (5/6) nephrectomy (CKD), CKD + H2S donor (NaHS), CKD + CO-releasing molecule (CORM3), CKD + NaHS and zinc protoporphyrin IX (Znpp), CKD + CORM3 and amino-oxy acetic acid (AOAA). Eleven weeks after 5/6Nx, behavioral tests (Novel object recognition test, Passive avoidance test and Barnes maze test) were performed to evaluate the cognitive level. At the end of the twelfth week, blood urea nitrogen (BUN) and serum creatinine (sCr) levels, as well as the expression levels of nuclear factor-erythroid factor 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), and neuronal loss in the hippocampus and prefrontal cortex were evaluated. CKD caused enhancement of BUN and sCr, reduction of Nrf2 and HO-1 proteins and enhancement of neuronal loss in the hippocampus and prefrontal cortex. In addition, CKD led to cognitive disturbances and memory impairment. CORM3 and NaHS returned all above indices to the levels measured in the control group. However, improving effects of CORM3 on cognitive impairment and Nrf2/HO-1 signaling pathway were prevented by AOAA and decreased H2S level as well as reciprocally improving effects of NaHS on cognitive disturbances and Nrf2/HO-1 signaling pathway were prevented by Znpp and decreased CO level. In conclusion, this study demonstrated that formation of CO and H2S were interdependently improved CKD-induced cognitive dysfunctions, through interaction with Nrf2/HO-1 signaling pathway.


Assuntos
Disfunção Cognitiva , Sulfeto de Hidrogênio , Compostos Organometálicos , Insuficiência Renal Crônica , Sulfetos , Animais , Ratos , Monóxido de Carbono/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Heme Oxigenase-1/metabolismo , Sulfeto de Hidrogênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Transdução de Sinais , Compostos Organometálicos/farmacologia , Sulfetos/farmacologia
2.
Brain Res Bull ; 186: 70-78, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35654262

RESUMO

BACKGROUND: Cerebral ischemia-reperfusion, subsequent hyperthermia, and hyperglycemia lead to neural damage. This study aimed to investigate the effects of using cathodal and/or anodal transcranial direct current stimulation (tDCS) in different stages of ischemia-reperfusion on apoptosis and controlling hyperthermia and hyperglycemia. MATERIALS AND METHODS: A total of 78 male Wistar rats were randomly assigned into six groups (n = 13), including sham, ischemia/reperfusion (I/R), anodal-tDCS (a-tDCS), cathodal-tDCS (c-tDCS), anodal/cathodal-tDCS (a/c-tDCS), and cathodal/anodal-tDCS (c/a-tDCS) groups. Global cerebral I/R was induced in all of the groups except for sham group. In a-tDCS and c-tDCS groups, the rats received anodal and cathodal currents in both I/R stages, respectively. In a/c-tDCS group, the rats received anodal current during the ischemia and cathodal current during the reperfusion. The c/a-tDCS group received the currents in the reverse order. The current intensity of 400 µA was applied in ischemia phase (15 min) and reperfusion phase (30 min, twice a day). Body temperature and plasma blood sugar were measured daily. Rats were also tested for novel object recognition and passive avoidance memory. The apoptosis of hippocampal tissue was evaluated by measuring Bax, Bcl-2, Caspase-3, and TUNEL staining. RESULTS: All tDCS significantly reduced hyperthermia and hyperglycemia, as well as Bax and Caspase-3 levels, it also increased Bcl-2 expression. The preliminary results from c/a-tDCS mode could improve the expression of apoptotic markers, memory function, hyperthermia, and hyperglycemia control and reduce DNA fragmentation compared to other stimulatory therapies. CONCLUSION: All tDCS modes could save neurons by suppressing apoptotic and enhancing anti-apoptotic pathways, especially in the c/a tDCS mode.


Assuntos
Isquemia Encefálica , Hiperglicemia , Fármacos Neuroprotetores , Estimulação Transcraniana por Corrente Contínua , Animais , Isquemia Encefálica/terapia , Caspase 3 , Infarto Cerebral , Hiperglicemia/terapia , Masculino , Ratos , Ratos Wistar , Reperfusão , Estimulação Transcraniana por Corrente Contínua/métodos , Proteína X Associada a bcl-2
3.
Metab Brain Dis ; 37(5): 1503-1516, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35499797

RESUMO

Multiple neuronal injury pathways are activated during cerebral ischemia and reperfusion (I/R). This study was designed to decrease potential neuronal injuries by using both transcranial direct current stimulation (tDCS) polarities in cerebral ischemia and its following reperfusion period. Ninety rats were randomly divided into six groups. In the sham group, rats were intact. In the I/R group, global cerebral I/R was only induced. In the I/R + c-tDCS and I/R + a-tDCS groups, cathodal and anodal currents were applied, respectively. In the I/R + c/a-tDCS, cathodal current was used in the cerebral ischemia and anodal in the reperfusion. In the I/R + a/c-tDCS group, cathodal and anodal currents were applied in the I/R, respectively. Hippocampal tissue was used to determine the levels of IL-1ß, TNF-α, NOS, SOD, MDA, and NMDAR. Hot plate and open field tests evaluated sensory and locomotor performances. The cerebral edema was also measured. Histological assessment was assessed by H/E and Nissl staining of the hippocampal CA1 region. All tDCS modes significantly decreased IL-1ß and TNF-α levels, especially in the c/a-tDCS. All tDCS caused a significant decrease in MDA and NOS levels while increasing SOD activity compared to the I/R group, especially in the c/a-tDCS mode. In the c-tDCS and a/c-tDCS groups, the NMDAR level was significantly decreased. The c/a-tDCS group improved sensory and locomotor performances more than other groups receiving tDCS. Furthermore, the least neuronal death was observed in the c/a-tDCS mode. Using two different polarities of tDCS could induce more neuroprotective versus pathophysiological pathways in cerebral I/R, especially in c/a-tDCS mode. HIGHLIGHTS: Multiple pathways of neuronal injury are activated in cerebral ischemia and reperfusion (I/R). Using tDCS could modulate neuroinflammation and oxidative stress pathways in global cerebral I/R. Using c/a-tDCS mode during cerebral I/R causes more neuroprotective effects against neuronal injuries of cerebral I/R.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Estimulação Transcraniana por Corrente Contínua , Animais , Isquemia Encefálica/terapia , Infarto Cerebral , Ratos , Reperfusão , Traumatismo por Reperfusão/terapia , Superóxido Dismutase , Fator de Necrose Tumoral alfa/metabolismo
4.
J Stroke Cerebrovasc Dis ; 31(3): 106241, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34983004

RESUMO

OBJECTIVES: Global cerebral ischemia (CI) causes severe neuronal injury, mainly in the hippocampal CA1 region. This study aimed to investigate an immediate using transcranial direct current stimulation (tDCS) in reducing neuronal injury induced by CI. MATERIALS AND METHODS: The 32 Wistar male rats were randomly divided into four groups (n=8 per group). In the ischemia group (I), CI was induced via the 4-vessel occlusion model. In the sham group (Sh), rats did not receive any intervention. In the ischemia+cathodal group (I+c/tDCS), the cathodal current was applied during CI. In the ischemia+anodal group (I+a/tDCS), the anodal current was applied. The current intensity of 400 µA was applied for 15-min during the ischemia. Hippocampal tissue was used to assess levels of NMDAR, IL-1ß, TNF-α, MDA, SOD, NOS, and apoptosis markers. Histological assessment and TUNEL staining were performed in CA1 hippocampal region. RESULTS: The c/tDCS significantly decreased the levels of IL-1ß and TNF-α than the I and a/tDCS groups. The c/tDCS significantly reduced MDA and NOS levels, while increasing the level of SOD than the I and a/tDCS. The c/tDCS caused a significant decrease in NMDAR level than the a/tDCS. Using c/tDCS significantly reduced the Bax and Caspase-3 expressions, while increasing the Bcl-2 expression than the I group. In the c/tDCS group, DNA fragmentation and neuronal death were significantly lower than the I and a/tDCS groups. CONCLUSION: Using cathodal a direct current could attenuate primary pathophysiological pathways induced by CI, and it eventually reduced neurons death and apoptosis in the CA1 hippocampal region.


Assuntos
Isquemia Encefálica , Região CA1 Hipocampal , Estimulação Transcraniana por Corrente Contínua , Animais , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/prevenção & controle , Região CA1 Hipocampal/fisiopatologia , Masculino , Neuroproteção , Ratos , Ratos Wistar , Resultado do Tratamento
5.
J Matern Fetal Neonatal Med ; 35(5): 852-860, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32102575

RESUMO

AIMS: Cardiac arrest and stroke as a life-threatening event that may occur in throughout the female life, especially during pregnancy or after delivery. Previous studies demonstrated that cerebral ischemia during pregnancy or the puerperium is a rare occurrence but is associated with significant mortality and high morbidity. This study was designed to assess the effects of pregnancy and lactation on behavioral deficits, neural density, and angiogenesis in rat dams undergoing global ischemia. MATERIALS AND METHODS: Thirty-two female Wistar rats were divided into four groups: virgin-Sham (Vir-Sham) group, virgin-ischemic (Vir-Isc) group, pregnancy-lactation-sham (P-L-Sham) group, and pregnancy-lactation-ischemic (P-L-Isc) group. Global brain ischemia was induced in ischemic groups by using the 2-vessel occlusion (2-VO) model at the end of lactation phase. Seven days after 2-VO, anxiety-like signals and passive avoidance memory tests were assessed in animals. KEY FINDINGS: We found that the lactation significantly improved memory and reduced anxiety-like signals in P-L-Isc group as compared with Vir-Isc group. Moreover, angiogenesis and neural density significantly increased in the P-L-Isc group as compared with the Vir-Isc group. SIGNIFICANCE: This finding for the first time indicated that lactation protects the maternal brain against ischemic insult partly through promoting angiogenesis and neurogenesis.


Assuntos
Isquemia Encefálica , Lactação , Animais , Encéfalo , Feminino , Isquemia , Gravidez , Ratos , Ratos Wistar
6.
Artigo em Inglês | MEDLINE | ID: mdl-32651983

RESUMO

High-mobility group box 1 (HMGB1), also called amphoterin, HMG1 and p30, is a highly conserved protein between different species that has various functions in nucleus such as stabilization of nucleosome formation, facilitation of deoxyribonucleic acid (DNA) bending and increasing the DNA transcription, replication and repair. It has also been indicated that HMGB1 acts as a potent pro-inflammatory cytokine with increasing concentrations in acute and chronic inflammatory diseases. Asthma is a common chronic respiratory disease associated with high morbidity and mortality rates. One central characteristic in its pathogenesis is airway inflammation. Considering the inflammatory role of HMGB1 and importance of inflammation in asthma pathogenesis, a better understanding of this protein is vital. This review describes the structure, cell surface receptors, signaling pathways and intracellular and extracellular functions of HMGB1, but also focuses on its inflammatory role in asthma. Moreover, this manuscript reviews experimental and clinical studies that investigated the pathologic role of HMGB1.


Assuntos
Asma/fisiopatologia , Proteína HMGB1/metabolismo , Inflamação/patologia , Animais , Citocinas/metabolismo , Humanos , Transdução de Sinais/fisiologia
7.
Pharm Biol ; 58(1): 107-115, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31942829

RESUMO

Context: Airway remodelling is one of the most refractory problems in asthma. According to the critical roles of oxidative stress and inflammation in airway remodelling, it is supposed that ascorbic acid and calcitriol have beneficial effects. However, a combination of antioxidants may be more effective for asthma therapy.Objective: This study investigated the protective effects of ascorbic acid in combination with calcitriol on airway remodelling in ovalbumin (OVA)-induced chronic asthma.Materials and methods: BALB/c mice were assigned into seven groups: (1) Control; (2) Asthma; (3) Ineffective C (orally 39 mg/kg ascorbic acid); (4) Ineffective D (intraperitoneally 1.5 µg/kg calcitriol); (5) Effective C (orally 130 mg/kg ascorbic acid); (6) Effective D (intraperitoneally 5 µg/kg calcitriol); (7) Combination (orally 39 mg/kg ascorbic acid + intraperitoneally 1.5 µg/kg calcitriol). All animals were sensitized and challenged with OVA except in the control group (normal saline). In all treatment groups, mice were administrated vitamins 30 min before each challenge (three times per week for 8 consecutive weeks).Results: In comparison with the asthma group, co-administration of ineffective doses of ascorbic acid and calcitriol led to the decreased levels of IL-13 (50.5 ± 1.85 vs. 42.13 ± 0.37 pg/mL, p = 0.02) and IgE (58.74 ± 0.43 vs. 45.78 ± 2.05 ng/mL, p = 0.003) as well as the reduction of goblet hyperplasia and subepithelial fibrosis (5 vs. 1 score, p = 0.001 and 5 vs. 2 score, p = 0.001, respectively).Discussion and conclusions: Combination of ascorbic acid with calcitriol in ineffective doses improves airway remodelling due to additive effects possibly through reduction of oxidative stress and inflammation. This study provides a scientific basis for further research and clinical applications of ascorbic acid and calcitriol and can be generalized to the broader pharmacological studies.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Asma/tratamento farmacológico , Calcitriol/farmacologia , Animais , Ácido Ascórbico/administração & dosagem , Asma/fisiopatologia , Calcitriol/administração & dosagem , Modelos Animais de Doenças , Quimioterapia Combinada , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Estresse Oxidativo/efeitos dos fármacos
8.
Addict Biol ; 25(4): e12780, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31210397

RESUMO

The orbitofrontal cortex (OFC) is involved in compulsive drug seeking and drug relapse. Its involvement in cue-, context-, and stress-induced reinstatement of drug seeking has also been confirmed in animal models. Deep brain stimulation (DBS) was proposed to be an effective intervention for patients with treatment-refractory addiction. Therefore, in the present study, we investigated the potential efficacy of DBS in the OFC for controlling addictive-like behaviors in rats. Rats were bilaterally implanted with electrodes in the OFC and trained to the morphine conditioned place preference (CPP; 3, 5, and 7 mg/kg). High-frequency (HF; 130 Hz) or low-frequency (LF; 13 Hz) DBS-like stimulation was applied during the conditioning (40 minutes, once daily, 3 days) or extinction (20 minutes, once daily, 6-10 days) trials. Following the extinction, morphine preference was reinstated by a priming dose of morphine (2 mg/kg). When applied during the conditioning phase, HF-DBS significantly decreased preference for the morphine-associated context. HF-DBS during the extinction phase of morphine CPP reduced the number of days to full extinction of morphine preference and prevented morphine priming-induced recurrence of morphine preference. LF-DBS did not change any of these addictive behaviors. HF-DBS had no significant effect on novel object recognition memory. In conclusion, HF-DBS of the OFC prevented morphine preference, facilitated extinction of morphine preference, and blocked drug priming-induced reinstatement of morphine seeking. These findings may indicate a potential applicability of DBS in the treatment of relapse to drug use. Further studies will be necessary to assess the translatability of these findings to the clinic.


Assuntos
Analgésicos Opioides/farmacologia , Comportamento Animal , Estimulação Encefálica Profunda/métodos , Comportamento de Procura de Droga , Morfina/farmacologia , Córtex Pré-Frontal , Animais , Condicionamento Clássico , Extinção Psicológica , Masculino , Dependência de Morfina , Ratos
9.
Respir Physiol Neurobiol ; 270: 103265, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31404684

RESUMO

Airway inflammation and oxidative stress are the two major characteristics of asthma pathogenesis. Therefore, this study evaluated the protective effects of ascorbic acid in combination with calcitriol on the oxidative damages and inflammation in asthma model. All animals, except in the control group, were sensitized and challenged with ovalbumin. One day after the last challenge, samples of bronchoalveolar lavage fluid was collected for the assessment of total white blood cell counts and differential count of white blood cell and plasma was used for the measurement of pro-oxidant/antioxidant balance level. Lung tissue samples were also stored for examining peribronchial inflammatory cell infiltration, phosphorylated nuclear factor-kappa B expression and measurement of malondialdehyde level. Induction of asthma caused significant increases in total white blood cell counts, percentage of neutrophils and eosinophils and a decrease in the percentage of lymphocytes. Moreover, asthma resulted in significant increases of peribronchial inflammatory cell infiltration, phosphorylated nuclear factor-kappa B expression and malondialdehyde level. However, no significant changes were observed in pro-oxidant/antioxidant balance level with the induction of asthma. Co-administration of low doses of ascorbic acid and calcitriol returned all to the levels measured before sensitization and challenge. Combination of low doses of ascorbic acid with calcitriol improves mouse asthma model by a possible additive effects through the decrease of oxidative stress and inflammation.


Assuntos
Anti-Inflamatórios/uso terapêutico , Ácido Ascórbico/uso terapêutico , Asma/tratamento farmacológico , Asma/metabolismo , Calcitriol/uso terapêutico , Agonistas dos Canais de Cálcio/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Vitaminas/uso terapêutico , Animais , Asma/patologia , Líquido da Lavagem Broncoalveolar/citologia , Doença Crônica , Quimioterapia Combinada , Contagem de Leucócitos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina
10.
Addict Biol ; 24(4): 685-695, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29737638

RESUMO

Deep brain stimulation (DBS) has been proposed as a promising intervention for patients with treatment-refractory substance use disorder. Here, we investigated if high-frequency DBS in the lateral hypothalamic area (LHA) could affect drug-induced reinforcement. Rats were bilaterally implanted with bipolar stimulation electrodes in the LHA and trained to the morphine conditioned place preference. DBS (monophasic square pulses, 130 Hz, 100-microsecond pulse duration and 150 µA) was applied during the morphine-pairing trials (30 minutes daily for 4 days) or drug-free postconditioning test (15 minutes) to determine its effect on the acquisition or expression of morphine reward, respectively. LHA DBS during morphine-conditioning trials blocked subsequent preference for the drug-associated context. In contrast, DBS in the postconditioning phase failed to inhibit expression of morphine-induced conditioned place preference. These results were further controlled by ruling out significant changes by DBS in physical performance and anxiety-like behavior as measured by an open field test and by precluding anhedonia-like behavior as measured by sucrose consumption test. Our results suggest that LHA DBS can prevent development of morphine reward without diminishing the motivation for naturally rewarding stimuli. Therefore, the LHA could be a potential target for research in the field of DBS-based treatment of intractable substance use disorder. Further studies will be necessary to assess the translatability of these findings to the clinic.


Assuntos
Comportamento Animal , Condicionamento Clássico , Estimulação Encefálica Profunda/métodos , Região Hipotalâmica Lateral , Morfina/administração & dosagem , Entorpecentes/administração & dosagem , Reforço Psicológico , Anedonia , Animais , Comportamento Exploratório , Motivação , Ratos , Recompensa , Sacarose , Edulcorantes
11.
J. coloproctol. (Rio J., Impr.) ; 37(2): 88-94, Apr.-June 2017. graf
Artigo em Inglês | LILACS | ID: biblio-893978

RESUMO

ABSTRACT Objective: The aim of this study was to investigate the effects of acute physical and psychological stress and temporary central nucleus of the amygdala (CeA) block on stress-induced visceral hypersensitivity. Methods: Forty two male Wistar rats were used in this study. Animals were divided into 7 groups (n = 6); 1 - Control, 2 - physical stress, 3 - psychological stress, 4 - sham, 5 - lidocaine, 6 - lidocaine + physical stress and 7 - lidocaine + psychological stress. Stress induction was done using a communication box. Results: Abdominal withdrawal reflex (AWR) score was monitored one hour after stress exposure. AWR score significantly heightened at 20, 40 and 60 mmHg in the psychological stress group compared with control (p < 0.05), while, it was almost unchanged in other groups. This score was strikingly decreased at 20, 40 and 60 mmHg in lidocaine + psychological stress group compared with psychological stress with no tangible response on physical stress. Total stool weight was significantly increased in psychological stress group compared with control (0.72 ± 0.15, 0.1 ± 0.06 g) (p < 0.05), but it did not change in physical stress compared to control group (0.16 ± 0.12, 0.1 ± 0.06 g) (p < 0.05). Concomitant use of lidocaine with stress followed the same results in psychological groups (0.18 ± 0.2, 0.72 ± 0.15 g) (p < 0.05), while it did not have any effect on physical stress group (0.25 ± 0.1, 0.16 ± 0.12 g) (p < 0.05). Conclusions: Psychological stress could strongly affect visceral hypersensitivity. This effect is statistically comparable with physical stress. Temporary CeA block could also reduce visceral hypersensitivity post-acute psychological stress.


RESUMEN Objetivo: O objetivo desse estudo foi investigar os efeitos do estresse físico e psicológico agudo e bloqueio temporário do núcleo central da amídala (CeA) na hipersensibilidade visceral induzida por estresse. Métodos: Quarenta e dois ratos Wistar machos foram empregados nesse estudo. Os animais foram divididos em 7 grupos (n = 6): 1 - Controle, 2 - estresse físico, 3 - estresse psicológico, 4 - simulacro, 5 - lidocaína, 6 - lidocaína + estresse físico e 7 - lidocaína + estresse psicológico. A indução do estresse foi feita com o uso de uma caixa de comunicação. Resultados: O escore do reflexo de retirada abdominal (RRA) foi monitorado uma hora depois da exposição ao estresse. O escore RRA aumentou significativamente a 20, 40 e 60 mmHg no grupo de estresse psicológico versus controle (p < 0,05), enquanto que praticamente permaneceu inalterado nos demais grupos. Esse escore diminuiu drasticamente a 20, 40 e 60 mmHg no grupo de lidocaína + estresse psicológico versus estresse psicológico, sem resposta tangível no estresse físico. O peso total das fezes aumentou significativamente no grupo de estresse psicológico versus controle (0,72 ± 0,15, 0,1 ± 0,06 g) (p < 0,05), mas não houve mudança no grupo de estresse físico versus controle (0,16 ± 0,12, 0,1 ± 0,06 g) (p < 0,05). O uso simultâneo da lidocaína com o estresse acompanhou os mesmos resultados nos grupos psicológicos (0,18 ± 0,2, 0,72 ± 0,15 g) (p < 0,05), enquanto que não foi observado qualquer efeito no grupo de estresse físico (0,25 ± 0,1, 0,16 ± 0,12 g) (p < 0,05). Conclusões: O estresse psicológico pode afetar fortemente a hipersensibilidade visceral. Esse efeito é estatisticamente comparável com o estresse físico. Um bloqueio temporário do CeA também pode reduzir a hipersensibilidade visceral pós-estresse psicológico agudo.


Assuntos
Animais , Ratos , Estresse Psicológico/complicações , Vísceras/fisiopatologia , Núcleo Central da Amígdala/fisiopatologia , Hipersensibilidade/fisiopatologia , Reflexo Abdominal/fisiologia , Ratos Wistar , Percepção da Dor/fisiologia , Núcleo Central da Amígdala/metabolismo
12.
Data Brief ; 9: 338-44, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27672673

RESUMO

In this dataset, we analyzed galvanic-evoked head movements (GEHMs) in the spatial planes of yaw, and roll in normal and unilaterally labyrinthectomized (UL) Wistar rats. The rats were assigned in 4 groups of 10: control, sham, right-UL and left-UL. Bilateral galvanic vestibular stimulation (GVS) was presented by our "ring-shaped electrode" design (see "Short-term galvanic vestibular stimulation promotes functional recovery and neurogenesis in unilaterally labyrinthectomized rats" (M. Shaabani et al., 2016) [1]). Required data were collected through video recording of GEHMs followed by image processing and statistical analysis.

13.
Brain Res ; 1648(Pt A): 152-162, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27444558

RESUMO

Current experimental research on the therapeutic effects of galvanic vestibular stimulation (GVS) has mainly focused on neurodegenerative disorders. However, it primarily stimulates the vestibular nuclei and could be potentially effective in modulating imbalance between them in the case of unilateral labyrinthectomy (UL). Fifty male Wistar rats (180-220g) were used in 5 groups of 10: intact, sham, right-UL (RUL; without intervention), and two other right-UL groups with GVS intervention [one group treated with low rate GVS (GVS.LF; 6-7Hz), and the other treated with high rate GVS (GVS.HF; 17-18Hz)]. The UL models were prepared by intratympanic injection of sodium arsanilate. GVS protocols were implemented 30min/day and continued for 14 days via ring-shaped copper electrodes inserted subcutaneously over each mastoid. Functional recovery was assessed by several postural tests including support surface area, landing and air-righting reflexes, and rotarod procedure. Immunohistochemical investigations were performed on ipsi- and contra-lesional medial vestibular nuclei (MVN) using bromodeoxyuridine (BrdU) and Ki67, as markers of cell proliferation. Behavioral evaluations showed significant functional recovery of GVS-treated groups compared to RUL group. The percent of marked cells with BrdU and Ki67 were significantly higher in the ipsilesional MVN of both GVS-treated groups compared with other groups. Our findings confirmed the effectiveness of GVS-intervention in accelerating static and dynamic vestibular compensation. This could be explained by the cell proliferation in ipsilesional MVN cells and rapid rebalancing of the VNs and the modulation of their motor outputs. Therefore, GVS could be promising for rehabilitating patients with unilateral vestibular weakness.


Assuntos
Estimulação Elétrica/métodos , Vestíbulo do Labirinto/fisiologia , Animais , Bromodesoxiuridina/farmacologia , Masculino , Neurogênese/fisiologia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Sensação , Núcleos Vestibulares/fisiologia , Vestíbulo do Labirinto/metabolismo
14.
Iran J Med Sci ; 41(1): 53-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26722146

RESUMO

Morphine withdrawal usually results in unsuccessful outcomes. Despite partial benefits from alternative substances such as methadone, its use may not lead to the desired result due to the lack of mental tranquility during the withdrawal period. In this study, by means of an animal model, morphine itself was used to manage morphine dependence. Forty mice were divided into 5 groups, in which 4 groups became dependent by increasing daily doses of morphine for 7 days (15-45 mg/kg). Afterwards, the animals received morphine for 14 days by either of the following regimens: Once daily 45 mg/kg (positive controls)Increasing the interval (each time 6 hours longer than the previous interval)Irregular interval in every 36, 12 and 24 hours until the 21(th) day12, 24, 36 hours decreasing doses (each time 2.5 mg/kg less than the former dosage). Negative controls received saline solution only. On day 22, total withdrawal index (TWI) was determined by injecting 3 mg/kg of naloxone. Thereafter, blood samples were taken for the measurement of cortisol and glucose levels. TWI significantly decreased in all test groups in comparison with the positive control animals (P<0.001). Cortisol levels significantly decreased when either the dosage or the administration frequencies were decreased on a regular and gradual basis (P<0.005). Blood glucose levels significantly decreased in animals that received decreasing doses of morphine (P<0.005). This study suggests that no other measures may be required in clinical practice except for changing the dosage regimen of morphine for the cessation of self-administration.

15.
Fundam Clin Pharmacol ; 29(3): 299-309, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25846801

RESUMO

Chronic consumption of morphine induces physical dependency, anxiety, and neurodegeneration. In this study, morphine on its own has been used for the management of morphine-induced dependency, oxidative stress, and apoptosis. Forty-eight male rats were randomly divided into six groups. Rats in groups 1-5 were made morphine dependent by an increasing manner of morphine for 7 days (15-45 mg/kg). For the next 14 days, morphine was administered using the following regimen: (i) once daily 45 mg/kg (positive controls), (ii) the same dose at additional intervals (6 h longer than the previous intervals each time), (iii) 45 mg/kg of morphine at irregular intervals like of 12, 24, 36 h, (iv) decreasing dose once daily (every time 2.5 mg/kg less than the former dosage). Group 5 received 45 mg/kg of morphine and 10 mg/kg of SOD mimetic agent (M40401) injection per day. Group 6 (negative control) received saline solution only. On day 22, all animals received naloxone (3 mg/kg) and their Total Withdrawal Index (TWI) and blood cortisol levels were measured. After drug treatment, hippocampus cells were isolated, and oxidative, antioxidative, and apoptotic factors were evaluated. Various regimens of morphine reduced TWI, cortisol levels, Bax activity, caspase-3, caspase-9, TNF-α, and IL-1ß and lipid peroxidation. In all treatment groups, GSH level, superoxide dismutase, glutathione peroxidase, and Bcl-2 activity were significantly increased. Furthermore, SOD mimetic agent c diminished morphine effect on SOD activity. Thus, varying the dosage regimen of morphine can reduce the severity of morphine-induced dependency and neurodegeneration.


Assuntos
Analgésicos Opioides/administração & dosagem , Ansiedade/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Dependência de Morfina/tratamento farmacológico , Morfina/administração & dosagem , Degeneração Neural , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Analgésicos Opioides/toxicidade , Animais , Ansiedade/metabolismo , Ansiedade/patologia , Ansiedade/psicologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Comportamento Animal/efeitos dos fármacos , Biomarcadores/sangue , Células Cultivadas , Modelos Animais de Doenças , Esquema de Medicação , Hipocampo/metabolismo , Hipocampo/patologia , Hidrocortisona/sangue , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Morfina/toxicidade , Dependência de Morfina/metabolismo , Dependência de Morfina/patologia , Dependência de Morfina/psicologia , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/patologia , Síndrome de Abstinência a Substâncias/psicologia , Fatores de Tempo
16.
J Mol Neurosci ; 56(2): 313-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25740015

RESUMO

It has been shown that microtubule (MT) activity and dynamics can have huge impacts on synaptic plasticity and memory formation. This is mainly due to various functions of MTs in neurons; MTs are involved in dendritic spine formation, axonal transportation, neuronal polarity, and receptor trafficking. Recent studies from our group and other labs have suggested the possible role of brain MT dynamicity and activity in memory; however, there is a need for more detailed studies regarding this aspect. In this study, we have tried to evaluate the importance of microtubule dynamicity rather than stability in memory formation in vivo. In order to investigate the role of MT stability in memory formation, we treated mice with paclitaxel-a classic microtubule-stabilizing agent. We then studied the behavior of treated animals using Morris water maze (MWM) test. To measure the effect of injected paclitaxel on MT polymerization kinetics, we conducted polymerization assays on brain extracts of the same paclitaxel-treated animals. Our results show that paclitaxel treatment affects animals' memory in a negative way and treated animals behave poorly in MWM compared to control group. In addition, our kinetics studies show that MT stability is significantly increased in brain extracts from paclitaxel-treated mice, but MT dynamics is reduced. Thus, we suggest that dynamicity is a very important feature of MT protein structures, and regarding memory formation, dynamicity is more important than stability and high activity.


Assuntos
Aprendizagem em Labirinto/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Paclitaxel/farmacologia , Moduladores de Tubulina/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microtúbulos/metabolismo , Paclitaxel/toxicidade , Moduladores de Tubulina/toxicidade
17.
Iran J Med Sci ; 40(2): 125-32, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25821292

RESUMO

BACKGROUND: Herbal medical compounds and their major constituent have been used in the management and treatment of opioid withdrawal syndrome and pain. This study was carried out to clarify the effect of curcumin, the major compound of turmeric, on morphine withdrawal syndrome in mouse model and its possible mechanisms of pain relieving activity by assessing in writhing test as a model of visceral pain. METHODS: Due to two separate protocols (withdrawal syndrome and pain), 144 male albino mice were divided in two major groups. In withdrawal syndrome group, test effect of various dosages of curcumin (10, 20, and 40 mg/kg) was assessed on withdrawal signs and compared with positive and negative control and standard treatment (clonidine 0.4 mg/kg) groups. In pain groups, to determine the mechanism of pain relieving activity of curcumin, various dosages of curcumin (10, 20, and 40 mg/kg) in three separated groups, were used against acetic acid induced writhing (which is a constriction) test. The most effective dose (40 mg/kg) was used in writhing test and compared with groups pretreated with antagonist of major neurotransmitters involved in pain; and compared with group pretreated with vehicle (DMSO, 0.05%) as control. RESULTS: Curcumin attenuates withdrawal syndrome in a dose dependent manner in comparison with the dependent positive control group (P<0.05). It also indicated that pretreatment with naloxone and cyproheptadine significantly attenuate antinociception effect of curcumin (P<0.05). CONCLUSION: This study advocate that antinociception of curcumin was mediated by opioidergic and adrenergic system.

18.
Brain Res ; 1558: 74-83, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24565925

RESUMO

It is reported that circulating testosterone levels decrease after cerebral ischemia. The aim of this study was to evaluate the effects of testosterone on oxidative stress, brain-derived neurotrophic factor (BDNF) levels, neurogenesis, histological damage and sensorimotor recovery in a castrated male rat model of focal cerebral ischemia. Animals were divided into four groups. For all animals, castrations were conducted 7 days before transient middle cerebral artery occlusion (MCAO) was done and cerebral ischemia was induced. The first group served as sham. Second was MCAO group and received vehicle only, third was MCAO group that was post-treated with testosterone and the fourth was MCAO group post-treated with testosterone and flutamide. Treatment only with testosterone significantly weakened oxidative stress and increased BDNF levels and sensorimotor recovery during a 10 days period. Rats receiving testosterone demonstrated a significant reduction in infarct volume and a significant increase in neurogenesis on 10th day after focal cerebral ischemia. Our results for the first time showed a potential advantageous effect of testosterone after cerebral ischemia in male rats, which was probably mediated by promoting antioxidant defenses, BDNF levels and neurogenesis.


Assuntos
Antioxidantes/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Testosterona/uso terapêutico , Animais , Infarto Encefálico/etiologia , Infarto Encefálico/prevenção & controle , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/mortalidade , Locomoção/efeitos dos fármacos , Masculino , Malondialdeído/sangue , Estresse Oxidativo/efeitos dos fármacos , Transtornos Psicomotores/tratamento farmacológico , Transtornos Psicomotores/etiologia , Ratos , Ratos Wistar , Testosterona/sangue , Fatores de Tempo
19.
Chin J Physiol ; 57(6): 329-34, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25575521

RESUMO

In view of the cardioprotective effect of oxytocin (OT) released in response to stress, the aim of this study was to evaluate the role of heat shock proteins Hsps 70, 27 and 20 in stress-induced cardioprotection in isolated, perfused rat hearts. Rats were divided in two main groups: unstressed and stressed rats, and all of them were subjected to i.c.v. infusion of vehicle or drugs: unstressed rats [control: vehicle, OT (100 ng/5 µl), atosiban (ATO; 4.3 µg/5 µl) as OT antagonist, ATO+OT], and stressed rats [St: stress, OT+St, ATO+St]. After anesthesia, hearts were isolated and subjected to 30 min regional ischemia and 60 min subsequent reperfusion (IR). Acute stress protocol included swimming for 10 min before anesthesia. Malondialdehyde in coronary effluent was measured and the expression of Hsp 70, 27 and 20 was measured in myocardium using real-time reverse transcriptase polymerase chain reaction (RT-PCR). The malondialdehyde levels, which decreased in the St and OT groups, increased by the administration of atosiban as an OT antagonist. The expression of Hsp27 increased 4 to 5 folds by stress induction and i.c.v. infusion of OT. Central administration of atosiban prior to both stress and OT decreased Hsp27 mRNA levels. These findings suggest that endogenous OT may participate in stress-induced cardioprotection via Hsp27 over-expression as an early response.


Assuntos
Proteínas de Choque Térmico HSP27/fisiologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Ocitocina/fisiologia , Estresse Fisiológico , Animais , Masculino , Malondialdeído/análise , Ocitocina/antagonistas & inibidores , Ratos , Ratos Wistar , Regulação para Cima
20.
ISRN Neurol ; 2013: 592398, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23401794

RESUMO

Testosterone has been shown to worsen histological and neurological impairment during cerebral ischemia in animal models. Cell culture studies revealed that testosterone is implicated in protecting neural and glial cells against insults, and they started to elucidate testosterone pathways that underlie these protective effects. These studies support the hypothesis that testosterone can be neuroprotective throughout an episode of cerebral ischemia. Therefore, we evaluated the mechanisms underlying the shift between testosterone protective and deleterious effects via block testosterone aromatization and androgen receptors in rats subjected to 60-minute middle cerebral artery occlusion. Fifty rats were divided into five equal groups: gonadally intact male; castrated male; intact male + flutamide; intact male + letrozole; intact male + combination flutamide and letrozole. Our results indicated that castration has the ability to reduce histological damage and to improve neurological score 24 hours after middle cerebral artery occlusion. Moreover, flutamide improved histologic and neurological impairment better than castration. Letrozole induced increases in striatal infarct volume and seizures in gonadally intact rats. Combination of flutamide and letrozole showed that letrozole can reverse beneficial effects of flutamide. In conclusion, it seems that the beneficial effects of flutamide are the prevention of the deleterious effects and enhancement of neuroprotective effects of testosterone during cerebral ischemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...