Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267519

RESUMO

The rapid emergence of the Omicron variant and its large number of mutations has led to its classification as a variant of concern (VOC) by the WHO(1). Initial studies on the neutralizing response towards this variant within convalescent and vaccinated individuals have identified substantial reductions(2-8). However many of these sample sets used in these studies were either small, uniform in nature, or were compared only to wild-type (WT) or, at most, a few other VOC. Here, we assessed IgG binding, (Angiotensin-Converting Enzyme 2) ACE2 binding inhibition, and antibody binding dynamics for the omicron variant compared to all other VOC and variants of interest (VOI)(9), in a large cohort of infected, vaccinated, and infected and then vaccinated individuals. While omicron was capable of binding to ACE2 efficiently, antibodies elicited by infection or immunization showed reduced IgG binding and ACE2 binding inhibition compared to WT and all VOC. Among vaccinated samples, antibody binding responses towards omicron were only improved following administration of a third dose. Overall, our results identify that omicron can still bind ACE2 while pre-existing antibodies can bind omicron. The extent of the mutations appear to inhibit the development of a neutralizing response, and as a result, omicron remains capable of evading immune control.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21262328

RESUMO

As global vaccination campaigns against SARS-CoV-2 proceed, there is particular interest in the longevity of immune protection, especially with regard to increasingly infectious virus variants. Neutralizing antibodies (Nabs) targeting the receptor binding domain (RBD) of SARS-CoV-2 are promising correlates of protective immunity and have been successfully used for prevention and therapy. As SARS-CoV-2 variants of concern (VOCs) are known to affect binding to the ACE2 receptor and by extension neutralizing activity, we developed a bead-based multiplex ACE2-RBD inhibition assay (RBDCoV-ACE2) as a highly scalable, time-, cost-, and material-saving alternative to infectious live-virus neutralization tests. By mimicking the interaction between ACE2 and the RBD, this serological multiplex assay allows the simultaneous analysis of ACE2 binding inhibition to the RBDs of all SARS-CoV-2 VOCs and variants of interest (VOIs) in a single well. Following validation against a classical virus neutralization test and comparison of performance against a commercially available assay, we analyzed 266 serum samples from 168 COVID-19 patients of varying severity. ACE2 binding inhibition was reduced for ten out of eleven variants examined compared to wild-type, especially for those displaying the E484K mutation such as VOCs beta and gamma. ACE2 binding inhibition, while highly individualistic, positively correlated with IgG levels. ACE2 binding inhibition also correlated with disease severity up to WHO grade 7, after which it reduced.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21252958

RESUMO

The SARS-CoV-2 pandemic virus is consistently evolving with mutations within the receptor binding domain (RBD)1 being of particular concern2-4. To date, there is little research into protection offered following vaccination or infection against RBD mutants in emerging variants of concern (UK3, South African5, Mink6 and Southern California7). To investigate this, serum and saliva samples were obtained from groups of vaccinated (Pfizer BNT-162b28), infected and uninfected individuals. Antibody responses among groups, including salivary antibody response and antibody binding to RBD mutant strains were examined. The neutralization capacity of the antibody response against a patient-isolated South African variant was tested by viral neutralization tests and further verified by an ACE2 competition assay. We found that humoral responses in vaccinated individuals showed a robust response after the second dose. Interestingly, IgG antibodies were detected in large titers in the saliva of vaccinated subjects. Antibody responses showed considerable differences in binding to RBD mutants in emerging variants of concern. A substantial reduction in RBD binding and neutralization was detected for the South African variant. Taken together our data reinforces the importance of administering the second dose of Pfizer BNT-162b2 to acquire high levels of neutralizing antibodies. High antibody titers in saliva suggest that vaccinated individuals may have reduced transmission potential. Substantially reduced neutralization for the South African variant highlights importance of surveillance strategies to detect new variants and targeting these in future vaccines.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20247775

RESUMO

Thromboembolic events are frequently reported in patients infected with the SARS-CoV-2 virus. However, the exact mechanisms of thromboembolic events remain elusive. In this work, we show that immunoglobulin G (IgG) subclass in patients with COVID-19 trigger the formation of procoagulant PLTs in a Fc-gamma-RIIA (Fc{gamma}RIIA) dependent pathway leading to increased thrombus formation in vitro. Most importantly, these events were significantly inhibited via Fc{gamma}RIIA blockade as well as by the elevation of PLTs intracellular cyclic-adenosine-monophosphate (cAMP) levels by the clinical used agent Iloprost. The novel findings of Fc{gamma}RIIA mediated prothrombotic conditions in terms of procoagulant PLTs leading to higher thrombus formation as well as the successful inhibition of these events via Iloprost could be promising for the future treatment of the complex coagulopathy observed in COVID-19 disease. Key points- Fc-gamma-receptor IIA mediated PS externalization on the PLT surface triggers increased thrombus formation - Inductors of cAMP inhibit antibody-mediated thrombus formation and may have potential therapeutic advantage in COVID-19

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20187286

RESUMO

The pathophysiology of COVID-19 associated thrombosis seems to be multifactorial, involving interplay between cellular and plasmatic elements of the hemostasis. We hypothesized that COVID-19 is accompanied by platelet apoptosis with subsequent alteration of the coagulation system. We investigated depolarization of mitochondrial inner transmembrane potential ({Delta}{Psi}m), cytosolic calcium (Ca2+) concentration, and phosphatidylserine (PS) externalization by flow cytometry. Platelets from intensive care unit (ICU) COVID-19 patients (n=21) showed higher {Delta}{Psi}m depolarization, cytosolic Ca2+ concentration and PS externalization, compared to healthy controls (n=18) and COVID-19 non-ICU patients (n=4). Moreover significant higher cytosolic Ca2+ concentration and PS was observed compared to septic ICU control group (ICU control). In ICU control group (n=5; ICU non-COVID-19) cytosolic Ca2+ concentration and PS externalization was comparable to healthy control, with an increase {Delta}{Psi}m depolarization. Sera from ICU COVID-19 13 patients induced significant increase in apoptosis markers ({Delta}{Psi}m depolarization, cytosolic Ca2+ concentration and PS externalization). compared to healthy volunteer and septic ICU control. Interestingly, immunoglobulin G (IgG) fractions from COVID-19 patients induced an Fc gamma receptor IIA dependent platelet apoptosis ({Delta}{Psi}m depolarization, cytosolic Ca2+ concentration and PS externalization). Enhanced PS externalization in platelets from ICU COVID-19 patients was associated with increased sequential organ failure assessment (SOFA) score (r=0.5635) and DDimer (r=0.4473). Most importantly, patients with thrombosis had significantly higher PS externalization compared to those without. The strong correlations between apoptosis markers and increased D-Dimer levels as well as the incidence of thrombosis may indicate that antibody-mediated platelet apoptosis potentially contributes to sustained increased thromboembolic risk in ICU COVID-19 patients. Key pointsO_LISevere COVID-19 is associated with increased antibody-mediated platelet apoptosis. C_LIO_LIPlatelet apoptosis in severe COVID-19 is correlated with D-Dimer and higher incidence of thromboembolisms. C_LI

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20169961

RESUMO

The majority of infections with SARS-CoV-2 are asymptomatic or mild without the necessity of hospitalization. It is of importance to reveal if these patients develop an antibody response against SARS-CoV-2 and to define which antibodies confer virus neutralization. We conducted a comprehensive serological survey of 49 patients with a mild course of disease and quantified neutralizing antibody responses against a clinical SARS-CoV-2 isolate employing human cells as targets. Four patients (8%), even though symptomatic, did not develop antibodies against SARS-CoV-2 and two other patients (4%) were only positive in one of the six serological assays employed. For the remainder, antibody response against the S-protein correlated with serum neutralization whereas antibodies against the nucleocapsid were poor predictors of virus neutralization. Regarding neutralization, only six patients (12%) could be classified as highly neutralizers. Furthermore, sera from several individuals with fairly high antibody levels had only poor neutralizing activity. In addition, employing a novel serological Western blot system to characterize antibody responses against seasonal coronaviruses, we found that antibodies against the seasonal coronavirus 229E might contribute to SARS-CoV-2 neutralization. Altogether, we show that there is a wide breadth of antibody responses against SARS-CoV-2 in patients that differentially correlate with virus neutralization. This highlights the difficulty to define reliable surrogate markers for immunity against SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...