Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(26): 18256-18265, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904382

RESUMO

Alkynyl radicals and cations are crucial reactive intermediates in chemistry, but often evade direct detection. Herein, we report the direct observation of the phenylethynyl radical (C6H5CC˙) and its cation (C6H5CC+), which are two of the most reactive intermediates in organic chemistry. The radical is generated via pyrolysis of (bromoethynyl)benzene at temperatures above 1500 K and is characterized by photoion mass-selected threshold photoelectron spectroscopy (ms-TPES). Photoionization of the phenylethynyl radical yields the phenylethynyl cation, which has never been synthesized due to its extreme electrophilicity. Vibrationally-resolved ms-TPES assisted by ab initio calculations unveiled the complex electronic structure of the phenylethynyl cation, which appears at an adiabatic ionization energy (AIE) of 8.90 ± 0.05 eV and exhibits an uncommon triplet (3B1) ground state, while the closed-shell singlet (1A1) state lies just 2.8 kcal mol-1 (0.12 eV) higher in energy. The reactive phenylethynyl radical abstracts hydrogen to form ethynylbenzene (C6H5CCH) but also isomerizes via H-shift to the o-, m-, and p-ethynylphenyl isomers (C6H4CCH). These radicals are very reactive and undergo ring-opening followed by H-loss to form a mixture of C8H4 triynes, along with low yields of cyclic 3- and 4-ethynylbenzynes (C6H3CCH). At higher temperatures, dehydrogenation from the unbranched C8H4 triynes forms the linear tetraacetylene (C8H2), an astrochemically relevant polyyne.

2.
Phys Chem Chem Phys ; 25(45): 31146-31152, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37947458

RESUMO

2-Cyanoindene has recently been identified in the interstellar medium, however current models cannot fully account for its formation pathways. Herein, we identify and characterize 2-naphthylnitrene, which is prone to rearrange to 2- and 3-cyanoindene, in the gas phase using photoion mass-selective threshold photoelectron spectroscopy (ms-TPES). The adiabatic ionization energies (AIE) of triplet nitrene (3A'') to the radical cation in its lowest-energy doublet X̃+(2A') and quartet ã+(4A') electronic states were determined to be 7.72 ± 0.02 and 8.64 ± 0.02 eV, respectively, leading to a doublet-quartet energy splitting (ΔED-Q) of 0.92 eV (88.8 kJ mol-1). A ring-contraction mechanism yields 3-cyanoindene, which is selectively formed under mild pyrolysis conditions (800 K), while the lowest-energy isomer, 2-cyanoindene, is also observed under harsh pyrolysis conditions at 1100 K. The isomer-selective assignment was rationalized by Franck-Condon spectral modeling and by measuring the AIEs at 8.64 ± 0.02 and 8.70 ± 0.02 eV for 2- and 3-cyanoindene, respectively, in good agreement with quantum chemical calculations.

3.
J Phys Chem A ; 127(41): 8574-8583, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37734109

RESUMO

The thermal decomposition of 2- and 4-iodobenzyl iodide at high temperatures was investigated by mass-selective threshold photoelectron spectroscopy (ms-TPES) in the gas phase, as well as by matrix isolation infrared spectroscopy in cryogenic matrices. Scission of the benzylic C-I bond in the precursors at 850 K affords 2- and 4-iodobenzyl radicals (ortho- and para-IC6H4CH2•), respectively, in high yields. The adiabatic ionization energies of ortho-IC6H4CH2• to the X̃+(1A') and ã+(3A') cation states were determined to be 7.31 ± 0.01 and 8.78 ± 0.01 eV, whereas those of para-IC6H4CH2• were measured to be 7.17 ± 0.01 eV for X̃+(1A1) and 8.98 ± 0.01 eV for ã+(3A1). Vibrational frequencies of the ring breathing mode were measured to be 560 ± 80 and 240 ± 80 cm-1 for the X̃+(1A') and ã+(3A') cation states of ortho-IC6H4CH2•, respectively. At higher temperatures, subsequent aryl C-I cleavage takes place to form α,2- and α,4-didehydrotoluene diradicals, which rapidly undergo ring contraction to a stable product, fulvenallene. Nevertheless, the most intense vibrational bands of the elusive α,2- and α,4-didehydrotoluene diradicals were observed in the Ar matrices. In addition, high-energy and astrochemically relevant C7H6 isomers 1-, 2-, and 5-ethynylcyclopentadiene are observed at even higher pyrolysis temperatures along with fulvenallene. Complementary quantum chemical computations on the C7H6 potential energy surface predict a feasible reaction cascade at high temperatures from the diradicals to fulvenallene, supporting the experimental observations in both the gas phase and cryogenic matrices.

4.
Phys Chem Chem Phys ; 21(15): 7831-7840, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-30933202

RESUMO

Phenylacetylene offers two similarly attractive π binding sites to OH containing solvent molecules, the phenyl ring and the acetylenic triple bond. By systematically varying the solvent molecule and by methylating aromatic or acetylenic CH groups, the docking preference can be controlled. It ranges from almost exclusive acetylene docking to predominant phenyl docking, depending on how electron density is deposited into the conjugated system and how large the London dispersion interaction is. FTIR spectroscopy of supersonic jet expansions is used to observe the competitive docking preferences in phenylacetylene and some of its methylated derivatives. A new data evaluation procedure that estimates band strength uncertainties based on a Monte Carlo approach is introduced. We test how well two density functionals (B3LYP-D3 and M06-2X) in combination with a def2-TZVP basis set are able to describe the docking switch. B3LYP-D3 is slightly biased towards acetylenic hydrogen bond docking and M06-2X is strongly biased towards phenyl hydrogen bond docking. More accurate theoretical predictions are invited and some previous experimental assignments are questioned.

5.
J Phys Chem A ; 122(8): 2046-2059, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29365254

RESUMO

Complexes of phenylacetylene (PhAc) and formic acid (FA) present an interesting picture, where the two submolecules are tethered, sometimes multiply, by hydrogen bonds. The multiple tentacles adopted by PhAc-FA complexes stem from the fact that both submolecules can, in the same complex, serve as proton acceptors and/or proton donors. The acetylenic and phenyl π systems of PhAc can serve as proton acceptors, while the ≡C-H or -C-H of the phenyl ring can act as a proton donor. Likewise, FA also is amphiprotic. Hence, more than 10 hydrogen-bonded structures, involving O-H···π, C-H···π, and C-H···O contacts, were indicated by our computations, some with multiple tentacles. Interestingly, despite the multiple contacts in the complexes, the barrier between some of the structures is small, and hence, FA grazes around PhAc, even while being tethered to it, with hydrogen bonds. We used matrix isolation infrared spectroscopy to experimentally study the PhAc-FA complexes, with which we located global and a few local minima, involving primarily an O-H···π interaction. Experiments were corroborated by ab initio computations, which were performed using MP2 and M06-2X methods, with 6-311++G (d,p) and aug-cc-pVDZ basis sets. Single-point energy calculations were also done at MP2/CBS and CCSD(T)/CBS levels. The nature, strength, and origin of these noncovalent interactions were studied using AIM, NBO, and LMO-EDA analysis.

6.
J Phys Chem A ; 121(31): 5797-5808, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28715888

RESUMO

Non covalently bonded complexes of phenylacetylene-HCl were studied using matrix isolation infrared spectroscopy and ab initio calculations. Phenylacetylene (PhAc) is an interesting hydrogen bond precursor as it has multiple sites for weak interactions, and it was therefore considered worthwhile to study PhAc-HCl landscape. The interactions in PhAc-HCl were identified using the shifts in the infrared frequencies of the precursor molecules, as a result of complex formation. Our experiments unambiguously revealed spectral signatures of two types of H-π complexes, in both of which HCl was the proton donor. In one complex, the acetylenic π cloud (H-πAc) was the proton acceptor, while in the second, the role of the proton acceptor was played by the phenyl π cloud (H-πPh). The H-πAc and H-πPh complexes were evidenced by a 124 and 80 cm-1 red shift respectively, in the fundamental HCl stretch, relative to that of the uncomplexed HCl monomer. Ab initio calculations performed at M06-2X and MP2 level of theory using 6-311++G(d,p) and aug-cc-pVDZ basis functions indicated the H-πAc complex to be the global minimum and the H-πPh complex to be a local minimum; thus corroborating our experimental results. These conclusions were also confirmed by calculations at MP2/CBS and CCSD(T)/CBS limits. Interestingly, there were two isomers for the H-πAc complex, and it appears from an analysis of the charge densities, that one of the two isomers may serve as the gateway complex for the Markovnikov addition reaction. Computations identified a number of other minima, characterized by n-σ* and possibly Cl-π bonded structures, on the PhAc-HCl potential surface. AIM, NBO, and LMO-EDA analyses were also performed to characterize the non covalent interactions in the PhAc-HCl heterodimer.

7.
J Phys Chem A ; 120(47): 9390-9400, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27934330

RESUMO

This study reports, for the first time, the experimental study of the hydrogen-bonded complexes of H2O and MeOH with 1,3-dimethylimidazol-2-ylidene, which is a dimethyl-substituted N-heterocyclic carbene, using matrix isolation infrared spectroscopy. The hydrogen bond was found to be established between the carbene carbon and the hydrogen in the O-H group of H2O or MeOH. The hydrogen-bonded complexes of N-heterocyclic carbenes are significantly stronger than many conventional hydrogen-bonded systems, as is evidenced by the large red shifts observed in the infrared frequencies of complexed H2O and MeOH. The experimental results were corroborated by computations performed at MP2 and M06-2X levels of theory, using 6-311++G(d,p) and aug-cc-pVDZ basis sets, which indicated large interaction energies (∼9 kcal mol-1) for these complexes. Single-point calculations at the CCSD level of theory were also performed. Atoms-in-molecules (AIM), NBO, and LMOEDA analyses were also performed to understand the nature of the intermolecular interactions in these complexes. The dominant interaction was the electron delocalization from the carbene carbon to the σ* orbital of O-H of H2O or MeOH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...