Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 226: 112350, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34785489

RESUMO

Solar UVA irradiation-generated reactive oxygen species (ROS) induces the expression of matrix metalloproteinase 1 (MMP-1), leading to photoaging, however the molecular mechanism remains unclear. In the present study, we found that eriodictyol remarkably reduces UVA-mediated ROS generation and protects the skin cells from oxidative damage and the ensuing cell death. Moreover eriodictyol pretreatment significantly down-regulates the UVA-induced MMP-1 expression, and lowers the inflammatory responses within the skin cells. Pretreatment with eriodictyol upregulates the expression of tissue inhibitory metalloproteinase 1 (TIMP-1) and collagen-I (COL-1) at the transcriptional level in a dose-dependent manner. UVA-induced phosphorylation levels of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 leading to increased MMP-1 expression are significantly reduced in eriodictyol-treated skin cells. In addition, eriodictyol pretreatment significantly suppresses inflammatory cytokines and inhibits the activation of MAPK signaling cascades in skin cells. Taken together, our results demonstrate that eriodictyol has both potent anti-inflammatory and anti-photoaging effects.


Assuntos
Flavanonas
2.
Front Cell Dev Biol ; 9: 598717, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33644041

RESUMO

Light has attracted special attention as a stimulus for triggered drug delivery systems (DDS) due to its intrinsic features of being spatially and temporally tunable. Ultraviolet A (UVA) radiation has recently been used as a source of external light stimuli to control the release of drugs using a "switch on- switch off" procedure. This review discusses the promising potential of UVA radiation as the light source of choice for photo-controlled drug release from a range of photo-responsive and photolabile nanostructures via photo-isomerization, photo-cleavage, photo-crosslinking, and photo-induced rearrangement. In addition to its clinical use, we will also provide here an overview of the recent UVA-responsive drug release approaches that are developed for phototherapy and skin photoprotection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...