Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585742

RESUMO

Optical processors, built with "optical neurons", can efficiently perform high-dimensional linear operations at the speed of light. Thus they are a promising avenue to accelerate large-scale linear computations. With the current advances in micro-fabrication, such optical processors can now be 3D fabricated, but with a limited precision. This limitation translates to quantization of learnable parameters in optical neurons, and should be handled during the design of the optical processor in order to avoid a model mismatch. Specifically, optical neurons should be trained or designed within the physical-constraints at a predefined quantized precision level. To address this critical issues we propose a physics-informed quantization-aware training framework. Our approach accounts for physical constraints during the training process, leading to robust designs. We demonstrate that our approach can design state of the art optical processors using diffractive networks for multiple physics based tasks despite quantized learnable parameters. We thus lay the foundation upon which improved optical processors may be 3D fabricated in the future.

2.
Biomed Opt Express ; 15(3): 1798-1812, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38495703

RESUMO

With applications ranging from metabolomics to histopathology, quantitative phase microscopy (QPM) is a powerful label-free imaging modality. Despite significant advances in fast multiplexed imaging sensors and deep-learning-based inverse solvers, the throughput of QPM is currently limited by the pixel-rate of the image sensors. Complementarily, to improve throughput further, here we propose to acquire images in a compressed form so that more information can be transferred beyond the existing hardware bottleneck of the image sensor. To this end, we present a numerical simulation of a learnable optical compression-decompression framework that learns content-specific features. The proposed differentiable quantitative phase microscopy (∂-QPM) first uses learnable optical processors as image compressors. The intensity representations produced by these optical processors are then captured by the imaging sensor. Finally, a reconstruction network running on a computer decompresses the QPM images post aquisition. In numerical experiments, the proposed system achieves compression of × 64 while maintaining the SSIM of ∼0.90 and PSNR of ∼30 dB on cells. The results demonstrated by our experiments open up a new pathway to QPM systems that may provide unprecedented throughput improvements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...