Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plasmonics ; 18(3): 1173-1180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229147

RESUMO

The sensing performance parameters of the SPR sensors are sensitivity, detection accuracy, the figure of merit (FOM), and full-width half maximum (FWHM), and it has been discussed with refractive indexes of analyte 1.33, 1.35, 1.38, and 1.39. In this, we proposed a multilayer structure comprising nanofilms of Ag, Silicon, and PtSe2 for the early diagnosis of chikungunya virus. The suggested sensor structure consists of a BK7 (borosilicate crown) coupling prism over which the nanofilm of silver metal is present. The layer thicknesses and the number of silicon and PtSe2 sheets are optimized for high performance. At the operating wavelength of 633 nm, a Kretschmann-based SPR sensor has been proposed, which gives the highest sensitivity of 287.3 Deg/RIU. The principle of attenuated total reflection has been employed for the performance analysis of the sensor.

2.
Polymers (Basel) ; 14(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36015690

RESUMO

MXenes are 2D ceramic materials, especially carbides, nitrides, and carbonitrides derived from their parent 'MAX' phases by the etching out of 'A' and are famous due to their conducting, hydrophilic, biocompatible, and tunable properties. However, they are hardly stable in the outer environment, have low biodegradability, and have difficulty in drug release, etc., which are overcome by MXene/Polymer nanocomposites. The MXenes terminations on MXene transferred to the polymer after composite formation makes it more functional. With this, there is an increment in photothermal conversion efficiency for cancer therapy, higher antibacterial activity, biosensors, selectivity, bone regeneration, etc. The hydrophilic surfaces become conducting in the metallic range after the composite formation. MXenes can effectively be mixed with other materials like ceramics, metals, and polymers in the form of nanocomposites to get improved properties suitable for advanced applications. In this paper, we review different properties like electrical and mechanical, including capacitances, dielectric losses, etc., of nanocomposites more than those like Ti3C2Tx/polymer, Ti3C2/UHMWPE, MXene/PVA-KOH, Ti3C2Tx/PVA, etc. along with their applications mainly in energy storing and biomedical fields. Further, we have tried to enlist the MXene-based nanocomposites and compare them with conducting polymers and other nanocomposites. The performance under the NIR absorption seems more effective. The MXene-based nanocomposites are more significant in most cases than other nanocomposites for the antimicrobial agent, anticancer activity, drug delivery, bio-imaging, biosensors, micro-supercapacitors, etc. The limitations of the nanocomposites, along with possible solutions, are mentioned.

3.
Plasmonics ; 17(3): 1001-1008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35069047

RESUMO

This manuscript aims to analyze the effect of tin selenide (SnSe) on the sensing application of SPR biosensors. Tin selenide is the 2-dimensional transition metal dichalcogenide material. The proposed multilayer structure has a BK7 prism, a bimetallic layer of Au, tin selenide, and a graphene layer. Tin selenide is used to improve the performance parameters of the biosensor. The ε - SnSe nanosheet is placed in between two layers of gold (Au) in the Kretschmann configuration. The proposed configuration has a maximum sensitivity of 214 deg/RIU, 93.81% higher than the conventional sensor. The performance parameters like full width half maximum, detection accuracy, and quality factor have been analyzed. The ε - SnSe material is an air-stable 2-D. The proposed sensor is suitable for the analysis of chemical, medical, and biological analytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...