Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetologia ; 53(6): 1142-50, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20349036

RESUMO

AIMS/HYPOTHESIS: We investigated the direct effect of a nitric oxide donor (spermine NONOate) on glucose transport in isolated human skeletal muscle and L6 skeletal muscle cells. We hypothesised that pharmacological treatment of human skeletal muscle with N-(2-aminoethyl)-N-(2-hydroxy-2-nitrosohydrazino)-1,2-ethylenediamine (spermine NONOate) would increase intracellular cyclic GMP (cGMP) levels and promote glucose transport. METHODS: Skeletal muscle strips were prepared from vastus lateralis muscle biopsies obtained from seven healthy men. Muscle strips were incubated in the absence or presence of 5 mmol/l spermine NONOate or 120 nmol/l insulin. The L6 muscle cells were treated with spermine NONOate (20 micromol/l) and incubated in the absence or presence of insulin (120 nmol/l). The direct effect of spermine NONOate and insulin on glucose transport, cGMP levels and signal transduction was determined. RESULTS: In human skeletal muscle, spermine NONOate increased glucose transport 2.4-fold (p < 0.05), concomitant with increased cGMP levels (80-fold, p < 0.001). Phosphorylation of components of the canonical insulin signalling cascade was unaltered by spermine NONOate exposure, implicating an insulin-independent signalling mechanism. Consistent with this, spermine NONOate increased AMP-activated protein kinase (AMPK)-alpha1-associated activity (1.7-fold, p < 0.05). In L6 muscle cells, spermine NONOate increased glucose uptake (p < 0.01) and glycogen synthesis (p < 0.001), an effect that was in addition to that of insulin. Spermine NONOate also elicited a concomitant increase in AMPK and acetyl-CoA carboxylase phosphorylation. In the presence of the guanylate cyclase inhibitor LY-83583 (10 micromol/l), spermine NONOate had no effect on glycogen synthesis and AMPK-alpha1 phosphorylation. CONCLUSIONS/INTERPRETATION: Pharmacological treatment of skeletal muscle with spermine NONOate increases glucose transport via insulin-independent signalling pathways involving increased intracellular cGMP levels and AMPK-alpha1-associated activity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , GMP Cíclico/metabolismo , Glucose/metabolismo , Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , Análise de Variância , Transporte Biológico/efeitos dos fármacos , Western Blotting , Células Cultivadas , Humanos , Insulina/metabolismo , Insulina/farmacologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Espermina/análogos & derivados , Espermina/farmacologia
2.
Diabetologia ; 49(12): 2983-92, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17019595

RESUMO

AIMS/HYPOTHESIS: Exercise enhances insulin-stimulated glucose transport in skeletal muscle through changes in signal transduction and gene expression. The aim of this study was to assess the impact of acute and short-term exercise training on whole-body insulin-mediated glucose disposal and signal transduction along the canonical insulin signalling cascade. METHODS: A euglycaemic-hyperinsulinaemic clamp, with vastus lateralis skeletal muscle biopsies, was performed at baseline and 16 h after an acute bout of exercise and short-term exercise training (7 days) in obese non-diabetic (n=7) and obese type 2 diabetic (n=8) subjects. RESULTS: Insulin-mediated glucose disposal was unchanged following acute exercise in both groups. Short-term exercise training increased insulin-mediated glucose disposal in obese type 2 diabetic (p<0.05), but not in obese non-diabetic subjects. Insulin activation of (1) IRS1, (2) IRS2, (3) phosphotyrosine-associated phosphatidylinositol-3 kinase activity and (4) the substrate of phosphorylated Akt, AS160, a functional Rab GTPase activating protein important for GLUT4 (now known as solute carrier family 2 [facilitated glucose transporter], member 4 [SLC2A4]) translocation, was unchanged after acute or chronic exercise in either group. GLUT4 protein content was increased in obese type 2 diabetic subjects (p<0.05), but not in obese non-diabetic subjects following chronic exercise. CONCLUSIONS/INTERPRETATION: Exercise training increased whole-body insulin-mediated glucose disposal in obese type 2 diabetic patients. These changes were independent of functional alterations in the insulin-signalling cascade and related to increased GLUT4 protein content.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Exercício Físico/fisiologia , Transportador de Glucose Tipo 4/metabolismo , Biópsia , Pressão Sanguínea , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Dieta para Diabéticos , Teste de Esforço , Feminino , Técnica Clamp de Glucose , Humanos , Insulina/sangue , Insulina/fisiologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade/sangue , Obesidade/complicações , Obesidade/metabolismo , Obesidade/fisiopatologia , Fosfatidilinositol 3-Quinases/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...