Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 13(1): 20846, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012238

RESUMO

The increasing use of additive manufacturing (AM) techniques (e.g., 3D-printing) offers many advantages but at the same time presents some challenges. One concern is the possible exposure and health risk related to metal containing particles of different sizes. Using the nickel-based alloys Hastelloy X (HX) and Inconel 939 (IN939) as a case, the aim of this cross-disciplinary study was to increase the understanding on possible health hazards and exposure. This was done by performing in-depth characterization of virgin, reused and condensate powders, testing in vitro toxicity (cytotoxicity, genotoxicity, oxidative stress), and measuring occupational airborne exposure. The results showed limited metal release from both HX and IN939, and slightly different surface composition of reused compared to virgin powders. No or small effects on the cultured lung cells were observed when tested up to 100 µg/mL. Particle background levels in the printing facilities were generally low, but high transient peaks were observed in relation to sieving. Furthermore, during post processing with grinding, high levels of nanoparticles (> 100,000 particles/cm3) were noted. Urine metal levels in AM operators did not exceed biomonitoring action limits. Future studies should focus on understanding the toxicity of the nanoparticles formed during printing and post-processing.


Assuntos
Ligas , Exposição Ocupacional , Ligas/toxicidade , Níquel/toxicidade , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Metais , Comércio , Tamanho da Partícula
3.
Environ Res ; 231(Pt 2): 116186, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37224945

RESUMO

Exposure to particulate matter (PM) has been associated with a wide range of adverse health effects, but it is still unclear how particles from various transport modes differ in terms of toxicity and associations with different human health outcomes. This literature review aims to summarize toxicological and epidemiological studies of the effect of ultrafine particles (UFPs), also called nanoparticles (NPs, <100 nm), from different transport modes with a focus on vehicle exhaust (particularly comparing diesel and biodiesel) and non-exhaust as well as particles from shipping (harbor), aviation (airport) and rail (mainly subway/underground). The review includes both particles collected in laboratory tests and the field (intense traffic environments or collected close to harbor, airport, and in subway). In addition, epidemiological studies on UFPs are reviewed with special attention to studies aimed at distinguishing the effects of different transport modes. Results from toxicological studies indicate that both fossil and biodiesel NPs show toxic effects. Several in vivo studies show that inhalation of NPs collected in traffic environments not only impacts the lung, but also triggers cardiovascular effects as well as negative impacts on the brain, although few studies compared NPs from different sources. Few studies were found on aviation (airport) NPs, but the available results suggest similar toxic effects as traffic-related particles. There is still little data related to the toxic effects linked to several sources (shipping, road and tire wear, subway NPs), but in vitro results highlighted the role of metals in the toxicity of subway and brake wear particles. Finally, the epidemiological studies emphasized the current limited knowledge of the health impacts of source-specific UFPs related to different transport modes. This review discusses the necessity of future research for a better understanding of the relative potencies of NPs from different transport modes and their use in health risk assessment.


Assuntos
Poluentes Atmosféricos , Material Particulado , Humanos , Material Particulado/toxicidade , Material Particulado/análise , Poluentes Atmosféricos/análise , Biocombustíveis , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Pulmão/química
4.
Nanomaterials (Basel) ; 12(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080081

RESUMO

Among the various nanomaterials present in society, many contain metals or metal compounds [...].

5.
Front Toxicol ; 4: 845987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295219

RESUMO

Genotoxicity is an important endpoint to assess for understanding the risks associated with nanoparticles (NPs). Most genotoxicity studies performed on NPs have focused on primary genotoxicity analyzed by comet- or micronuclei (MN) assay using microscopic scoring. Here, we established a protocol for a more efficient version of MN assessment using flow cytometry and, importantly, both primary and secondary (inflammation-driven) genotoxicity was assessed. Human bronchial epithelial cells (HBEC-3kt) were exposed to nickel oxide (NiO) NPs directly or indirectly. The indirect exposure was done to assess secondary genotoxicity, and in this case immune cells (THP-1 derived macrophages) were exposed on inserts and the HBEC were cultured in the lower compartment. The results in monocultures showed that no increased MN formation was observed in the HBEC cells but instead a clear MN induction was noted in THP-1 cells indicating higher sensitivity. No MN formation was either observed when the HBEC were indirectly exposed, but an increase in DNA strand breaks was detected using the comet assay. Taken together, the present study emphasizes the feasibility of assessing primary and secondary genotoxicity and, furthermore, shows a clear MN induction in THP-1 monoculture following NiO NPs exposure.

6.
Arch Toxicol ; 96(4): 969-985, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35188583

RESUMO

Translating particle dose from in vitro systems to relevant human exposure remains a major challenge for the use of in vitro studies in assessing occupational hazard and risk of particle exposure. This study aimed to model the lung deposition and retention of welding fume particles following occupational scenarios and subsequently compare the lung doses to those used in vitro. We reviewed published welding fume concentrations and size distributions to identify input values simulating real-life exposure scenarios in the multiple path particle dosimetry (MPPD) model. The majority of the particles were reported to be below 0.1 µm and mass concentrations ranged between 0.05 and 45 mg/m3. Following 6-h exposure to 5 mg/m3 with a count median diameter of 50 nm, the tracheobronchial lung dose (0.89 µg/cm2) was found to exceed the in vitro cytotoxic cell dose (0.125 µg/cm2) previously assessed by us in human bronchial epithelial cells (HBEC-3kt). However, the tracheobronchial retention decreased rapidly when no exposure occurred, in contrast to the alveolar retention which builds-up over time and exceeded the in vitro cytotoxic cell dose after 1.5 working week. After 1 year, the tracheobronchial and alveolar retention was estimated to be 1.15 and 2.85 µg/cm2, respectively. Exposure to low-end aerosol concentrations resulted in alveolar retention comparable to cytotoxic in vitro dose in HBEC-3kt after 15-20 years of welding. This study demonstrates the potential of combining real-life exposure data with particle deposition modelling to improve the understanding of in vitro concentrations in the context of human occupational exposure.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Soldagem , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Humanos , Exposição por Inalação/estatística & dados numéricos , Pulmão , Exposição Ocupacional/análise , Exposição Ocupacional/estatística & dados numéricos , Tamanho da Partícula
7.
Toxicology ; 467: 153100, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032623

RESUMO

Additive manufacturing (AM) or "3D-printing" is a ground-breaking technology that enables the production of complex 3D parts. Its rapid growth calls for immediate toxicological investigations of possible human exposures in order to estimate occupational health risks. Several laser-based powder bed fusion AM techniques are available of which many use metal powder in the micrometer range as feedstock. Large energy input from the laser on metal powders generates several by-products, like spatter and condensate particles. Due to often altered physicochemical properties and composition, spatter and condensate particles can result in different toxicological responses compared to the original powder particles. The toxicity of such particles has, however, not yet been investigated. The aim of the present study was to investigate the toxicity of condensate/spatter particles formed and collected upon selective laser melting (SLM) printing of metal alloy powders, including a nickel-chromium-based superalloy (IN939), a nickel-based alloy (Hastelloy X, HX), a high-strength maraging steel (18Ni300), a stainless steel (316L), and a titanium alloy (Ti6Al4V). Toxicological endpoints investigated included cytotoxicity, generation of reactive oxygen species (ROS), genotoxicity (comet and micronucleus formation), and inflammatory response (cytokine/chemokine profiling) following exposure of human bronchial epithelial cells (HBEC) or monocytes/macrophages (THP-1). The results showed no or minor cytotoxicity in the doses tested (10-100 µg/mL). Furthermore, no ROS generation or formation of micronucleus was observed in the HBEC cells. However, an increase in DNA strand breaks (detected by comet assay) was noted in cells exposed to HX, IN939, and Ti6Al4V, whereas no evident release of pro-inflammatory cytokine was observed from macrophages. Particle and surface characterization showed agglomeration in solution and different surface oxide compositions compared to the nominal bulk content. The extent of released nickel was small and related to the nickel content of the surface oxides, which was largely different from the bulk content. This may explain the limited toxicity found despite the high Ni bulk content of several powders. Taken together, this study suggests relatively low acute toxicity of condensates/spatter particles formed during SLM-printing using IN939, HX, 18Ni300, 316L, and Ti6Al4V as original metal powders.


Assuntos
Ligas/toxicidade , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Pneumonia/induzido quimicamente , Impressão Tridimensional , Ligas de Cromo/toxicidade , Citocinas/genética , Citocinas/metabolismo , Dano ao DNA , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Testes de Mutagenicidade , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/genética , Pneumonia/metabolismo , Pneumonia/patologia , Pós , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco , Aço Inoxidável/toxicidade , Células THP-1 , Titânio/toxicidade
8.
Int J Nanomedicine ; 16: 5895-5908, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475755

RESUMO

INTRODUCTION: Gold nanoparticles (AuNPs) have the potential to be used in various biomedical applications, partly due to the inertness and stability of gold. Upon intravenous injection, the NPs interact with the mononuclear phagocyte system, first with monocytes in the blood and then with macrophages in tissue. The NP-macrophage interaction will likely affect the stability of the AuNPs, but this is seldom analyzed. This study aimed to elucidate the role of macrophages in the biodissolution of AuNPs and underlying mechanisms. METHODS: With an in vitro dissolution assay, we used inductively coupled plasma mass spectrometry to quantitatively compare the dissolution of 5 and 20 nm AuNPs coated with citrate or PEG in cell medium alone or in the presence of THP1-derived macrophages at 24 hours. In addition, we analyzed the cell dose, compared extra- and intracellular dissolution, and explored the possible role of reactive nitrogen species. RESULTS: The results showed a higher cellular dose of the citrate-coated AuNPs, but dissolution was mainly evident for those sized 5 nm, irrespective of coating. The macrophages clearly assisted the dissolution, which was approximately fivefold higher in the presence of macrophages. The dissolution, however, appeared to take place mainly extracellularly. Acellular experiments demonstrated that peroxynitrite can initiate oxidation of gold, but a ligand is required to keep the gold ions in solution. CONCLUSION: This study suggests extracellular dissolution of AuNPs in the presence of macrophages, likely with the contribution of the release of reactive nitrogen species, and provides new insight into the fate of AuNPs in the body.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Macrófagos , Sistema Fagocitário Mononuclear , Espécies Reativas de Nitrogênio
9.
Arch Toxicol ; 95(9): 2961-2975, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34287684

RESUMO

Welders are daily exposed to various levels of welding fumes containing several metals. This exposure can lead to an increased risk for different health effects which serves as a driving force to develop new methods that generate less toxic fumes. The aim of this study was to explore the role of released metals for welding particle-induced toxicity and to test the hypothesis that a reduction of Cr(VI) in welding fumes results in less toxicity by comparing the welding fume particles of optimized Cr(VI)-reduced flux-cored wires (FCWs) to standard FCWs. The welding particles were thoroughly characterized, and toxicity (cell viability, DNA damage and inflammation) was assessed following exposure to welding particles as well as their released metal fraction using cultured human bronchial epithelial cells (HBEC-3kt, 5-100 µg/mL) and human monocyte-derived macrophages (THP-1, 10-50 µg/mL). The results showed that all Cr was released as Cr(VI) for welding particles generated using standard FCWs whereas only minor levels (< 3% of total Cr) were released from the newly developed FCWs. Furthermore, the new FCWs were considerably less cytotoxic and did not cause any DNA damage in the doses tested. For the standard FCWs, the Cr(VI) released in cell media seemed to explain a large part of the cytotoxicity and DNA damage. In contrast, all particles caused rather similar inflammatory effects suggesting different underlying mechanisms. Taken together, this study suggests a potential benefit of substituting standard FCWs with Cr(VI)-reduced wires to achieve less toxic welding fumes and thus reduced risks for welders.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Cromo/toxicidade , Aço Inoxidável/toxicidade , Soldagem , Poluentes Ocupacionais do Ar/análise , Brônquios/citologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromo/análise , Cromo/química , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Aço Inoxidável/análise , Células THP-1
10.
J Immunotoxicol ; 18(1): 74-84, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34019775

RESUMO

Sensitization to a contact allergen brings with it a lifelong risk to develop allergic contact dermatitis. Inflammation is an important part of the skin sensitizing mechanism, and understanding how different haptens stimulate the immune system, as well as the role played by different cell types present in skin, may be helpful for developing optimized in vitro models for risk assessment of new chemicals or mixtures. The aim of this study was to compare the cytokine profile following exposure of cells representing keratinocytes (HaCaT), monocytes (THP-1) and a co-culture of these cells to three clinically important skin sensitizers: cobalt (II) chloride (CoCl2), methylisothiazolinone (MI) and p-phenylenediamine (PPD). Secretion of ten pro-inflammatory cytokines was measured using multiplexing. The results showed that the cytokine response differed substantially between the three cell assays. CoCl2 caused an increase of IL-8 in HaCaT cells, while the induction of also IL-13 and IL-1ß was observed in THP-1 cells and co-cultures. MI induced six cytokines in HaCaT cells but only IL-1ß in the THP-1 cells and four cytokines in the co-culture. Interestingly, the IL-1ß response was massive in the co-culture. PPD caused release of IL-1ß in all three models as well as IL-8 in the co-culture. Control experiments with two non-sensitizers and irritants (lactic acid and sodium dodecyl sulfate) showed no effect on IL-8 or IL-1ß in the co-culture. Taken together, results from this exploratory analysis show unique cytokine profiles dependent on the type of hapten and cell model. Importantly, all three haptens triggered secretion of IL-1ß and IL-8 in a co-culture of HaCaT cells and THP-1 cells, representing the most robust test system.


Assuntos
Citocinas , Monócitos , Técnicas de Cocultura , Queratinócitos , Pele
11.
Chem Res Toxicol ; 34(6): 1481-1495, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33856197

RESUMO

The fluorescent probe 2',7'-dichlorofluorescein diacetate (DCFH-DA) together with the enzyme horseradish peroxidase (HRP) is widely used in nanotoxicology to study acellular reactive oxygen species (ROS) production from nanoparticles (NPs). This study examined whether HRP adsorbs onto NPs of Mn, Ni, and Cu and if this surface process influences the extent of metal release and hence the ROS production measurements using the DCFH assay in phosphate buffered saline (PBS), saline, or Dulbecco's modified Eagle's medium (DMEM). Adsorption of HRP was evident onto all NPs and conditions, except for Mn NPs in PBS. The presence of HRP resulted in an increased release of copper from the Cu NPs in PBS and reduced levels of nickel from the Ni NPs in saline. Both metal ions in solution and the adsorption of HRP onto the NPs can change the activity of HRP and thus influence the ROS results. The effect of HRP on the NP reactivity was shown to be solution chemistry dependent. Most notable was the evident affinity/adsorption of phosphate toward the metal NPs, followed by a reduced adsorption of HRP, the concomitant reduction in released manganese from the Mn NPs, and increased levels of released metals from the Cu NPs in PBS. Minor effects were observed for the Ni NPs. The solution pH should be monitored since the release of metals can change the solution pH and the activity of HRP is known to be pH-dependent. It is furthermore essential that solution pH adjustments are made following the addition of NaOH during diacetyl removal of DCFH-DA. Even though not observed for the given exposure conditions of this study, released metal ions could possibly induce agglomeration or partial denaturation of HRP, which in turn could result in steric hindrance for H2O2 to reach the active site of HRP. This study further emphasizes the influence of HRP on the background kinetics, its solution dependence, and effects on measured ROS signals. Different ways of correcting for the background are highlighted, as this can result in different interpretations of generated results. The results show that adsorption of HRP onto the metal NPs influenced the extent of metal release and may, depending on the investigated system, result in either under- or overestimated ROS signals if used together with the DCFH assay. HRP should hence be used with caution when measuring ROS in the presence of reactive metallic NPs.


Assuntos
Fluoresceínas/química , Peroxidase do Rábano Silvestre/química , Nanopartículas Metálicas/química , Metais Pesados/química , Espécies Reativas de Oxigênio/análise , Adsorção , Peroxidase do Rábano Silvestre/metabolismo , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície
12.
Front Toxicol ; 3: 653386, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295099

RESUMO

Lung cancer, one of the most common and deadly forms of cancer, is in some cases associated with exposure to certain types of particles. With the rise of nanotechnology, there is concern that some engineered nanoparticles may be among such particles. In the absence of epidemiological evidence, assessment of nanoparticle carcinogenicity is currently performed on a time-consuming case-by-case basis, relying mainly on animal experiments. Non-animal alternatives exist, including a few validated cell-based methods accepted for regulatory risk assessment of nanoparticles. Furthermore, new approach methodologies (NAMs), focused on carcinogenic mechanisms and capable of handling the increasing numbers of nanoparticles, have been developed. However, such alternative methods are mainly applied as weight-of-evidence linked to generally required animal data, since challenges remain regarding interpretation of the results. These challenges may be more easily overcome by the novel Adverse Outcome Pathway (AOP) framework, which provides a basis for validation and uptake of alternative mechanism-focused methods in risk assessment. Here, we propose an AOP for lung cancer induced by nanosized foreign matter, anchored to a selection of 18 standardized methods and NAMs for in silico- and in vitro-based integrated assessment of lung carcinogenicity. The potential for further refinement of the AOP and its components is discussed in relation to available nanosafety knowledge and data. Overall, this perspective provides a basis for development of AOP-aligned alternative methods-based integrated testing strategies for assessment of nanoparticle-induced lung cancer.

13.
Nanomaterials (Basel) ; 10(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961914

RESUMO

Silver nanoparticles (AgNPs) are commonly used in commercial and medical applications. However, AgNPs may induce toxicity, extracellular matrix (ECM) changes and inflammatory responses. Fibroblasts are key players in remodeling processes and major producers of the ECM. The aims of this study were to explore the effect of AgNPs on cell viability, both ex vivo in murine precision cut lung slices (PCLS) and in vitro in human lung fibroblasts (HFL-1), and immunomodulatory responses in fibroblasts. PCLS and HFL-1 were exposed to AgNPs with different sizes, 10 nm and 75 nm, at concentrations 2 µg/mL and 10 µg/mL. Changes in synthesis of ECM proteins, growth factors and cytokines were analyzed in HFL-1. Ag10 and Ag75 affected cell viability, with significantly reduced metabolic activities at 10 µg/mL in both PCLS and HFL-1 after 48 h. AgNPs significantly increased procollagen I synthesis and release of IL-8, prostaglandin E2, RANTES and eotaxin, whereas reduced IL-6 release was observed in HFL-1 after 72 h. Our data indicate toxic effects of AgNP exposure on cell viability ex vivo and in vitro with altered procollagen and proinflammatory cytokine secretion in fibroblasts over time. Hence, careful characterizations of AgNPs are of importance, and future studies should include timepoints beyond 24 h.

14.
Nanomaterials (Basel) ; 10(4)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230801

RESUMO

Relevant in vitro assays that can simulate exposure to nanoparticles (NPs) via inhalation are urgently needed. Presently, the most common method employed is to expose lung cells under submerged conditions, but the cellular responses to NPs under such conditions might differ from those observed at the more physiological air-liquid interface (ALI). The aim of this study was to investigate the cytotoxic and inflammatory potential of CeO2 NPs (NM-212) in a co-culture of A549 lung epithelial cells and differentiated THP-1 cells in both ALI and submerged conditions. Cellular dose was examined quantitatively using inductively coupled plasma mass spectrometry (ICP-MS). The role of serum and LPS-priming for IL-1ß release was further tested in THP-1 cells in submerged exposure. An aerosol of CeO2 NPs was generated by using the PreciseInhale® system, and NPs were deposited on the co-culture using XposeALI®. No or minor cytotoxicity and no increased release of inflammatory cytokines (IL-1ß, IL-6, TNFα, MCP-1) were observed after exposure of the co-culture in ALI (max 5 µg/cm2) or submerged (max 22 µg/cm2) conditions. In contrast, CeO2 NPs cause clear IL-1ß release in monocultures of macrophage-like THP-1, independent of the presence of serum and LPS-priming. This study demonstrates a useful approach for comparing effects at various in-vitro conditions.

15.
Nanomaterials (Basel) ; 10(4)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244462

RESUMO

Production of nickel (Ni) and nickel oxide (NiO) nanoparticles (NPs) leads to a risk of exposure and subsequent health effects. Understanding the toxicological effects and underlying mechanisms using relevant in vitro methods is, therefore, needed. The aim of this study is to explore changes in gene expression using RNA sequencing following long term (six weeks) low dose (0.5 µg Ni/mL) exposure of human lung cells (BEAS-2B) to Ni and NiO NPs as well as soluble NiCl2. Genotoxicity and cell transformation as well as cellular dose of Ni are also analyzed. Exposure to NiCl2 resulted in the largest number of differentially expressed genes (197), despite limited uptake, suggesting a major role of extracellular receptors and downstream signaling. Gene expression changes for all Ni exposures included genes coding for calcium-binding proteins (S100A14 and S100A2) as well as TIMP3, CCND2, EPCAM, IL4R and DDIT4. Several top enriched pathways for NiCl2 were defined by upregulation of, e.g., interleukin-1A and -1B, as well as Vascular Endothelial Growth Factor A (VEGFA). All Ni exposures caused DNA strand breaks (comet assay), whereas no induction of micronuclei was observed. Taken together, this study provides an insight into Ni-induced toxicity and mechanisms occurring at lower and more realistic exposure levels.

16.
Nanomaterials (Basel) ; 10(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935871

RESUMO

The increased use of nanoparticles (NPs) requires efficient testing of their potential toxic effects. A promising approach is to use reporter cell lines to quickly assess the activation of cellular stress response pathways. This study aimed to use the ToxTracker reporter cell lines to investigate (geno)toxicity of various metal- or metal oxide NPs and draw general conclusions on NP-induced effects, in combination with our previous findings. The NPs tested in this study (n = 18) also included quantum dots (QDs) in different sizes. The results showed a large variation in cytotoxicity of the NPs tested. Furthermore, whereas many induced oxidative stress only few activated reporters related to DNA damage. NPs of manganese (Mn and Mn3O4) induced the most remarkable ToxTracker response with activation of reporters for oxidative stress, DNA damage, protein unfolding and p53-related stress. The QDs (CdTe) were highly toxic showing clearly size-dependent effects and calculations suggest surface area as the most relevant dose metric. Of all NPs investigated in this and previous studies the following induce the DNA damage reporter; CuO, Co, CoO, CdTe QDs, Mn, Mn3O4, V2O5, and welding NPs. We suggest that these NPs are of particular concern when considering genotoxicity induced by metal- and metal oxide NPs.

17.
Nanoscale Adv ; 2(2): 648-658, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36133225

RESUMO

Silver (Ag) nanoparticles are commonly used in consumer products due to their antimicrobial properties. Here we studied the impact of Ag nanoparticles on immune responses by using cell lines of monocyte/macrophage and lung epithelial cell origin, respectively. Short-term experiments (24 h) showed that Ag nanoparticles reduced the lipopolysaccharide (LPS)-induced secretion of pro-inflammatory cytokines in THP-1 cells under serum-free conditions. ICP-MS analysis revealed that cellular uptake of Ag was higher under these conditions. Long-term exposure (up to 6 weeks) of BEAS-2B cells to Ag nanoparticles also suppressed pro-inflammatory cytokine production following a brief challenge with LPS. Experiments using reporter cells revealed that Ag nanoparticles as well as AgNO3 inhibited LPS-triggered Toll-like receptor (TLR) signaling. Furthermore, RNA-sequencing of BEAS-2B cells indicated that Ag nanoparticles affected TLR signaling pathways. In conclusion, Ag nanoparticles reduced the secretion of pro-inflammatory cytokines in response to LPS, likely as a result of the release of silver ions leading to an interference with TLR signaling. This could have implications for the use of Ag nanoparticles as antibacterial agents. Further in vivo studies are warranted to study this.

18.
Nanotoxicology ; 13(10): 1293-1309, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31418618

RESUMO

Millions of people in the world perform welding as their primary occupation resulting in exposure to metal-containing nanoparticles in the fumes generated. Even though health effects including airway diseases are well-known, there is currently a lack of studies investigating how different welding set-ups and conditions affect the toxicity of generated nanoparticles of the welding fume. The aim of this study was to investigate the toxicity of nine types of welding fume particles generated via active gas shielded metal arc welding (GMAW) of chromium-containing stainless steel under different conditions and, furthermore, to correlate the toxicity to the particle characteristics. Toxicological endpoints investigated were generation of reactive oxygen species (ROS), cytotoxicity, genotoxicity and activation of ToxTracker reporter cell lines. The results clearly underline that the choice of filler material has a large influence on the toxic potential. Fume particles generated by welding with the tested flux-cored wire (FCW) were found to be more cytotoxic compared to particles generated by welding with solid wire or metal-cored wire (MCW). FCW fume particles were also the most potent in causing ROS and DNA damage and they furthermore activated reporters related to DNA double- strand breaks and p53 signaling. Interestingly, the FCW fume particles were the most soluble in PBS, releasing more chromium in the hexavalent form and manganese compared to the other fumes. These results emphasize the importance of solubility of different metal constituents of the fume particles, rather than the total metal content, for their acute toxic potential.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Células-Tronco Embrionárias/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanopartículas/toxicidade , Aço Inoxidável , Soldagem , Poluentes Ocupacionais do Ar/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Metais Pesados/química , Metais Pesados/toxicidade , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Solubilidade
19.
Nanotoxicology ; 13(8): 1060-1072, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31322448

RESUMO

Nanoparticle-induced genotoxicity can arise through different mechanisms, and generally, primary and secondary genotoxicity can be distinguished where the secondary is driven by an inflammatory response. It is, however, yet unclear how a secondary genotoxicity can be detected using in vitro methods. The aim of this study was to investigate inflammation and genotoxicity caused by agglomerated nickel (Ni) and nickel oxide (NiO) nanoparticles and, furthermore, to explore the possibility to test secondary (inflammation-driven) genotoxicity in vitro. As a benchmark particle to compare with, we used crystalline silica (quartz). A proteome profiler antibody array was used to screen for changes in release of 105 different cytokines and the results showed an increased secretion of various cytokines including vascular endothelial growth factor (VEGF) following exposure of macrophages (differentiated THP-1 cells). Both Ni and NiO caused DNA damage (comet assay) following exposure of human bronchial epithelial cells (HBEC) and interestingly conditioned media (CM) from exposed macrophages also resulted in DNA damage (2- and 3-fold increase for Ni and NiO, respectively). Similar results were also found when using a co-culture system of macrophages and epithelial cells. In conclusion, this study shows that it is possible to detect a secondary genotoxicity in lung epithelial cells by using in vitro methods based on conditioned media or co-cultures. Further investigation is needed in order to find out what factors that are causing this secondary genotoxicity and whether such effects are caused by numerous nanoparticles.


Assuntos
Quelantes/toxicidade , Dano ao DNA/efeitos dos fármacos , Níquel/toxicidade , Animais , Linhagem Celular , Quelantes/química , Ensaio Cometa/métodos , Citocinas/genética , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação , Pulmão/efeitos dos fármacos , Níquel/química
20.
ACS Appl Bio Mater ; 2(3): 1006-1016, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021391

RESUMO

Gold nanoparticles (AuNPs) are readily functionalized and considered biocompatible making them useful in a wide range of applications. Upon human exposure, AuNPs will to a high extent reside in macrophages, cells that are designed to digest foreign materials. To better understand the fate of AuNPs in the human body, their possible dissolution needs to be explored. In this study, we tested the hypothesis that macrophages, and especially stimulated macrophages, can impact the dissolution of AuNPs in a size-dependent manner. We developed an in vitro method to compare the dissolution of citrate coated 5 and 50 nm-sized AuNPs, in terms of released gold ions as measured by inductive coupled mass spectrometry (ICP-MS), in (i) cell medium (alone) (ii) in medium with macrophages present and (iii) in medium with lipopolysaccharide (LPS) triggered macrophages (simulating inflammatory conditions). We found an evident, time-dependent dissolution of AuNPs in cell medium, corresponding to 3% and 0.6% of the added amounts of 5 and 50 nm AuNPs, respectively, after 1 week (168 h) of incubation. The dissolution of 5 nm AuNPs was further increased to 4% in the presence of macrophages and, most strikingly, 14% was dissolved in case of LPS-triggering. In contrast, only a minor increase was observed for 50 nm AuNPs after 1 week in the presence of LPS-triggered macrophages compared to medium alone. Dissolution experiments in the absence of cells highlighted the importance of biomolecules. Our findings thus show dissolution of citrate coated AuNPs that is dependent on size, presence of macrophages, and their inflammatory state. These findings have implications for understanding the transformation/dissolution and fate of AuNPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...