Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Recept Signal Transduct Res ; 35(5): 402-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25418122

RESUMO

INTRODUCTION: Bile acids are recognized as signaling molecules, mediating their effects both through the cell surface receptor TGR5 and the nuclear receptor FXR. After a meal, approximately 95% of the bile acids are transported from terminal ileum and back to the liver via the portal vein, resulting in postprandial elevations of bile acids in blood. During the digestion of fat, components from the microbiota, including LPS, are thought to reach the circulation where it may lead to inflammatory responses after binding TLR4 immune cells. Both LPS and bile acids are present in blood after a high-fat meal; we therefore wanted to study consequences of a possible interplay between TGR5 and TLR4 in human monocytes. METHODS: The monocytic cell line U937 stably transfected with the NF-κB reporter plasmid 3x-κB-luc was used as a model system to study the effects of TGR5 and TLR4. Activation of MAP kinases was studied to reveal functional consequences of triggering TGR5 in U937 cells. Effects of TGR5 and TLR4 activation were monitored using NF-κB luciferase assay and by quantification of the pro-inflammatory cytokines IL-6 and IL-8 using ELISA. RESULTS: In this study, results show that triggering TGR5 with the specific agonist betulinic acid (BA), and the bile acids CDCA or DCA, activated both the main MAP kinases ERK1/2, p38 and JNK, and the NF-κB signaling pathway. We further demonstrated that co-triggering of TLR4 and TGR5 enhanced the activation of NF-κB and the release of inflammatory cytokines in a synergistic manner compared to triggering of TLR4 alone. CONCLUSIONS: Thus, two different and simultaneous events associated with the digestive process coordinately affect the function of human monocytes and contribute to enhanced inflammation. Because elevated levels of circulatory LPS may contribute to the development of insulin resistance, the results from this study suggest that bile acids through the activation of TGR5 may have a role in the development of insulin resistance as well.


Assuntos
Inflamação/imunologia , Inflamação/patologia , Monócitos/imunologia , Receptores Acoplados a Proteínas G/imunologia , Receptor 4 Toll-Like/imunologia , Linhagem Celular , Humanos , Fatores Imunológicos/metabolismo , Inflamação/induzido quimicamente , Lipopolissacarídeos , Monócitos/patologia
2.
Mol Immunol ; 47(2-3): 373-80, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19800125

RESUMO

Complement activation plays an important role in human pathophysiology. The effect of classical pathway activation is largely dependent on alternative pathway (AP) amplification, whereas the role of AP for the down-stream effect of mannan-induced lectin pathway (LP) activation is poorly understood. In normal human serum specific activation of LP was obtained after exposure to a wide concentration range of mannan on the solid phase. Reaction mechanisms in this system were delineated in inhibition experiments with monoclonal antibodies. Direct mannose-binding lectin (MBL) independent activation of AP was not observed even at high mannan concentrations since addition of the inhibiting anti-MBL mAb 3F8 completely abolished generation of the terminal C5b-9 complex (TCC). However, selective blockade of AP by anti-factor D inhibited more than 80% of TCC release into the fluid phase after LP activation showing that AP amplification is quantitatively responsible for the final effect of initial specific LP activation. TCC generation on the solid phase was distinctly but less inhibited by anti-fD. C2 bypass of the LP pathway could be demonstrated, and AP amplification was also essential during C2 bypass in LP as shown by complete inhibition of TCC generation in C2-deficient serum by anti-fD and anti-properdin antibodies. In conclusion, the down-stream effect of LP activation depends strongly on AP amplification in normal human serum and in the C2 bypass pathway.


Assuntos
Via Alternativa do Complemento/imunologia , Mananas/imunologia , Lectina de Ligação a Manose/imunologia , Adolescente , Adulto , Anticorpos Monoclonais/imunologia , Complemento C2/imunologia , Complemento C4b/imunologia , Fator D do Complemento/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Humanos , Masculino , Soro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...