Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(3): 4231-4241, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38151015

RESUMO

Drawing inspiration from origami structures, a pressure sensor was developed with unique interconnection scaling at its creases crafted on a conductive paper substrate, paving the way for advanced wearable technology. Two screen-printed conductive paper substrates were combined face-to-face, and specific folds were introduced to optimize the sensor structure. The Electrical Contact Resistance (ECR) was systematically analyzed across different fold numbers and crease gaps, revealing a notable trade-off: while increasing the number of folds expanded the sensing area, it also influenced the ECR, reaching a performance plateau. Strategic modifications in the sensor's design, including refining interconnections at the crease, enhanced its sensitivity and stability, culminating in a remarkable sensitivity of 3.75 kPa-1 at subtle pressure levels (0-0.05 kPa). This sensor's real-world applications proved to be transformative, from detecting bruxism and aiding in neck posture correction to remotely sensing trigger finger locking phenomena, highlighting its potential as a pivotal tool in upcoming medical diagnostics and treatments.


Assuntos
Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Impedância Elétrica
2.
Biosensors (Basel) ; 13(2)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36831940

RESUMO

Skin-inspired flexible tactile sensors, with interfacial microstructure, are developed on cellulose fiber substrates for subtle pressure applications. Our device is made of two cellulose fiber substrates with conductive microscale structures, which emulate the randomly distributed spinosum in between the dermis and epidermis layers of the human skin. The microstructures not only permit a higher stress concentration at the tips but also generate electrical contact points and change contact resistance between the top and bottom substrates when the pressure is applied. Meanwhile, cellulose fibers possessing viscoelastic and biocompatible properties are utilized as substrates to mimic the dermis and epidermis layers of the skin. The electrical contact resistances (ECR) are then measured to quantify the tactile information. The microstructures and the substrate properties are studied to enhance the sensors' sensitivity. A very high sensitivity (14.4 kPa-1) and fast recovery time (approx. 2.5 ms) are achieved in the subtle pressure range (approx. 0-0.05 kPa). The device can detect subtle pressures from the human body due to breathing patterns and voice activity showing its potential for healthcare. Further, the guitar strumming and chord progression of the players with different skill levels are assessed to monitor the muscle strain during guitar playing, showing its potential for posture feedback in playing guitar or another musical instrument.


Assuntos
Celulose , Dispositivos Eletrônicos Vestíveis , Humanos , Retroalimentação , Pressão , Tato
3.
ACS Omega ; 5(45): 29342-29350, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33225165

RESUMO

Neurosurgical procedures often cause damage to the brain tissue at the periphery from surgical manipulations. Especially during retraction, a large amount of pressure could be applied on the brain surface, which can damage it, leading to brain herniation, which can be fatal for patients. To resolve this issue, we have developed a pressure sensor that can be used to monitor the applied pressure during surgery for intraoperative care. This device was tested on a rodent model to create a superficial surgically induced damage profile for three different applied pressures (30, 50, and 70 mmHg) and compared to a standard intracranial pressure monitoring system. Magnetic resonance imaging has been performed after surgical procedures to detect the herniation caused by applied pressure. To evaluate the damage to brain cells and tissue rupture, histological analysis was performed using hematoxylin and eosin staining. A scoring system was developed to understand the severity of the surgically induced brain injury, which will help neurosurgeons to limit the pressure to an optimum point without causing damage.

4.
ACS Appl Mater Interfaces ; 11(37): 34305-34315, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31453681

RESUMO

Piezoresistive pressure sensors have garnered significant attention because of their wide applications in automobiles, intelligent buildings, and biomedicine. For in vivo testing, the size of pressure sensors is a vital factor to monitor the pressure of specific portions of a human body. Therefore, the primary focus of this study is to miniaturize piezoresistive pressure sensors with graphene oxide (GO)-incorporated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) composite films on a flexible substrate for biomedical applications. Prior to the fabrication of pressure sensors, a comprehensive material analysis was applied to identify the horizontal placement of GO flakes within the PEDOT:PSS copolymers, revealing a reduction in variable range hopping distance and an enhancement in carrier mobility. For devices scaled to 0.2 cm, the sensitivity of PEDOT:PSS pressure sensors was conspicuously decreased owing to the late response, which can be effectively solved by GO incorporation. Using technology computer-aided design simulations, the current crowded at the PEDOT:PSS film surface and in the vicinity of an indium-tin-oxide electrode corner was found to be responsible for the changes in piezoresistive behaviors of the scaled devices. The miniaturized flexible piezoresistive pressure sensors with PEDOT:PSS/GO composite films are capable of monitoring the brain pressure of intracranial surgery of a rat and discerning different styles of music for a potential application in hearing aids.

5.
Sci Rep ; 7(1): 12252, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947743

RESUMO

In this study, the cross-talk effects and the basic piezoresistive characteristics of gold nanoparticle (Au-NP) incorporated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) pressure sensing 2 × 2 arrays are investigated using a cross-point electrode (CPE) structure. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) mappings were carried out to confirm the incorporation of Au-NPs in the PEDOT:PSS films. A solution mixing process was employed to incorporate the nanoparticles. When the diameter of the Au-NPs incorporated in the PEDOT:PSS films (Au-NPs/PEDOT:PSS) was 20 nm, the piezoresistive pressure sensing 2 × 2 arrays were almost immune to cross-talk effects, which enhances the pressure sensing accuracy of the array. The Au-NPs render the PEDOT:PSS films more resilient. This is confirmed by the high plastic resistance values using a nanoindenter, which reduce the interference between the active and passive cells. When the size of the Au-NPs is more than 20 nm, a significant cross-talk effect is observed in the pressure sensing arrays as a result of the high conductivity of the Au-NPs/PEDOT:PSS films with large Au-NPs. With the incorporation of optimally sized Au-NPs, the PEDOT:PSS piezoresistive pressure sensing arrays can be promising candidates for future high-resolution fingerprint identification system with multiple-electrode array structures.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Condutividade Elétrica , Ouro/análise , Pressão Hidrostática , Nanopartículas Metálicas/análise , Polímeros , Poliestirenos , Dermatoglifia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectrometria por Raios X
6.
Sensors (Basel) ; 15(1): 818-31, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25569756

RESUMO

The piezoresistive characteristics of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) pressure sensors with inter-digitated (IDE) and cross-point electrode (CPE) structures have been investigated. A small variation of the resistance of the pressure sensors with IDE without bottom indium-tin-oxide (b-ITO) film and with CPE structures was observed owing to the single carrier-conducting pathway. For the IDE pressure sensors with b-ITO, the piezoresistive characteristics at low and high pressure were similar to those of the pressure sensors with IDE without b-ITO and with CPE structures, respectively, leading to increased piezoresistive pressure sensitivity as the PEDOT:PSS film thickness decreased. A maximum sensitivity of more than 42 kΩ/Pa was achieved. When the normal pressure was applied, the increased number of conducting points or the reduced distance between the PEDOT oligomers within the PEDOT:PSS film resulted in a decrease of the resistance. The piezoresistive pressure sensors with a single carrier-conducting pathway, i.e., IDE without b-ITO and CPE structures, exhibited a small relaxation time and a superior reversible operation, which can be advantageous for fast piezoresistive response applications.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Impedância Elétrica , Polímeros/química , Poliestirenos/química , Pressão , Eletrodos , Fatores de Tempo , Compostos de Estanho/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...