Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 4: 313, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24204346

RESUMO

Stroke is the third leading cause of death and the primary cause of morbidity in the United States, thus posing an enormous burden on the healthcare system. The factors that determine the risk of an individual toward precipitation of an ischemic event possess a strong circadian component as does the ischemic event itself. This predictability provided a window of opportunity toward the development of chronopharmaceuticals which provided much better clinical outcomes. Experiments from our lab showed for the first time that neuronal susceptibility to ischemic events follows a circadian pattern; hippocampal neurons being most susceptible to an ischemic insult occurring during peak activity in a rodent model of global cerebral ischemia. We also demonstrated that the SCN2.2 cells (like their in vivo counterpart) are resistant to excitotoxicity by glutamate and that this was dependent on activation of ERK signaling. We are currently working on elucidating the complete neuroprotective pathway that provides a barricade against glutamate toxicity in the SCN2.2 cells. Our future experiments will be engaged in hijacking the neuroprotective mechanism in the SCN2.2 cells and applying it to glutamate-susceptible entities in an effort to prevent their death in the presence of excitotoxicity. Despite the advancement in chronopharmaceuticals, optimal clinical outcome with minimal adverse events are difficult to come by at an affordable price. Superior treatment options require a better understanding of molecular mechanisms that define the disease, including the role of the circadian clock.

2.
PLoS One ; 6(8): e23493, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21858143

RESUMO

BACKGROUND: Glutamate (Glu) is essential to central nervous system function; however excessive Glu release leads to neurodegenerative disease. Strategies to protect neurons are underdeveloped, in part due to a limited understanding of natural neuroprotective mechanisms, such as those present in the suprachiasmatic nucleus (SCN). This study tests the hypothesis that activation of ERK/MAPK provides essential protection to the SCN after exposure to excessive Glu using the SCN2.2 cells as a model. METHODOLOGY: Immortalized SCN2.2 cells (derived from SCN) and GT1-7 cells (neurons from the neighboring hypothalamus) were treated with 10 mM Glu in the presence or absence of the ERK/MAPK inhibitor PD98059. Cell death was assessed by Live/Dead assay, MTS assay and TUNEL. Caspase 3 activity was also measured. Activation of MAPK family members was determined by immunoblot. Bcl2, neuritin and Bid mRNA (by quantitative-PCR) and protein levels (by immunoblot) were also measured. PRINCIPAL FINDINGS: As expected Glu treatment increased caspase 3 activity and cell death in the GT1-7 cells, but Glu alone did not induce cell death or affect caspase 3 activity in the SCN2.2 cells. However, pretreatment with PD98059 increased caspase 3 activity and resulted in cell death after Glu treatment in SCN2.2 cells. This effect was dependent on NMDA receptor activation. Glu treatment in the SCN2.2 cells resulted in sustained activation of the anti-apoptotic pERK/MAPK, without affecting the pro-apoptotic p-p38/MAPK. In contrast, Glu exposure in GT1-7 cells caused an increase in p-p38/MAPK and a decrease in pERK/MAPK. Bcl2-protein increased in SCN2.2 cells following Glu treatment, but not in GT1-7 cells; bid mRNA and cleaved-Bid protein increased in GT1-7, but not SCN2.2 cells. CONCLUSIONS: Facilitation of ERK activation and inhibition of caspase activation promotes resistance to Glu excitotoxicity in SCN2.2 cells. SIGNIFICANCE: Further research will explore ERK/MAPK as a key molecule in the prevention of neurodegenerative processes.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Western Blotting , Caspase 3/metabolismo , Linhagem Celular , Maleato de Dizocilpina/farmacologia , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Flavonoides/farmacologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Modelos Neurológicos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fármacos Neuroprotetores/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Núcleo Supraquiasmático/citologia , Núcleo Supraquiasmático/metabolismo
3.
Comp Med ; 60(4): 256-62, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20819374

RESUMO

Anesthetics are widely used in experiments investigating neurotoxicity and neuroprotection; however, these agents are known to interfere with the outcome of these experiments. The purpose of this overview is to review these effects and suggest methods for minimizing unintended consequences on experimental outcomes. Information on the neuroprotective and neurotoxic effects of isoflurane, dexmedetomidine, propofol, ketamine, barbiturates, halothane, xenon, carbon dioxide, and nitrous oxide is summarized. The pertinent cell signaling pathways of these agents are discussed. Methods of humane animal euthanasia without anesthetics are considered. Most anesthetics alter the processes of neuronal survival and death. When designing survival surgeries, sham controls subjected to anesthesia but not the surgical intervention should be compared with controls subjected to neither anesthesia nor surgery. Additional controls could include using an anesthetic with a different mechanism of action from the primary anesthetic used. Because the effects of anesthetics lessen with time after surgery, survival surgeries should include later time points until at least 7 d after the procedure. Humane methods of animal euthanasia that do not require anesthetics exist and should be used whenever appropriate.


Assuntos
Anestésicos/farmacologia , Eutanásia Animal/métodos , Sistema Nervoso/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pesquisa , Transdução de Sinais/efeitos dos fármacos , Toxicologia/métodos , Barbitúricos , Dióxido de Carbono , Dexmedetomidina , Halotano , Isoflurano , Ketamina , Óxido Nitroso , Propofol , Xenônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...