Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
J Environ Monit ; 13(5): 1184-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21509401

RESUMO

Rare earth elements and several metals formerly uncommon in commerce are being introduced into new products, particularly as nanoscaled materials. Until recently, little attention has been paid to their sustainability issues. This perspective addresses these elements, their commercial uses, health and environment issues, sustainability, and suggests a path forward.


Assuntos
Elementos Químicos , Química Verde/métodos , Nanoestruturas/química , Nanotecnologia/métodos , Meio Ambiente , Monitoramento Ambiental , Política Ambiental , Poluentes Ambientais/química , Manufaturas/análise , Metais Terras Raras/química
3.
Ciênc. Saúde Colet. (Impr.) ; 16(1): 165-178, jan. 2011. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: lil-569037

RESUMO

In this review, we focus on environmental cleanup and provide a background and overview of current practice; research findings; societal issues; potential environment, health, and safety implications; and future directions for nanoremediation. We also discuss nanoscale zero-valent iron in detail. We searched the Web of Science for research studies and accessed recent publicly available reports from the U.S. Environmental Protection Agency and other agencies and organizations that addressed the applications and implications associated with nanoremediation techniques. We also conducted personal interviews with practitioners about specific site remediations. We aggregated information from 45 sites, a representative portion of the total projects under way, to show nanomaterials used, types of pollutants addressed, and organizations responsible for each site. Nanoremediation has the potential not only to reduce the overall costs of cleaning up large-scale contaminated sites but also to reduce cleanup time, eliminate the need for treatment and disposal of contaminated soil, and reduce some contaminant concentrations to near zero - all in situ.


Nesta revisão, nos concentramos na limpeza ambiental e fornecemos um histórico e uma visão geral da prática atual, conclusões de pesquisas, questões em potencial sociais, ambientais, de saúde e segurança, bem como o direcionamento futuro para a nanorremediação. Também discutimos em detalhes a tecnologia de remediação ferro zero valente em nanoescala. Consultamos estudos de pesquisa na Web of Science e acessamos os relatórios disponibilizados ao público recentemente pela Agência de Proteção Ambiental dos EUA e por outras agências e organizações que abordam aplicações e implicações associadas às técnicas de nanorremediação. Também realizamos entrevistas pessoais com praticantes sobre remediações de locais específicos. Foram agregadas informações de 45 locais, parte representativa do total dos projetos em andamento, mostrando os nanomateriais utilizados, tipos de poluentes abordados e organizações responsáveis em cada local. A nanorremediação não apenas tem o potencial de reduzir os custos gerais da limpeza de locais contaminados em grande escala como também reduz o tempo de limpeza, elimina a necessidade de tratamento e descarte de solo contaminado e reduz algumas concentrações de contaminantes a níveis próximos a zero, tudo isso in situ.

4.
Cien Saude Colet ; 16(1): 165-78, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21180825

RESUMO

In this review, we focus on environmental cleanup and provide a background and overview of current practice; research findings; societal issues; potential environment, health, and safety implications; and future directions for nanoremediation. We also discuss nanoscale zero-valent iron in detail. We searched the Web of Science for research studies and accessed recent publicly available reports from the U.S. Environmental Protection Agency and other agencies and organizations that addressed the applications and implications associated with nanoremediation techniques. We also conducted personal interviews with practitioners about specific site remediations. We aggregated information from 45 sites, a representative portion of the total projects under way, to show nanomaterials used, types of pollutants addressed, and organizations responsible for each site. Nanoremediation has the potential not only to reduce the overall costs of cleaning up large-scale contaminated sites but also to reduce cleanup time, eliminate the need for treatment and disposal of contaminated soil, and reduce some contaminant concentrations to near zero--all in situ.

5.
Environ Health Perspect ; 117(12): 1813-31, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20049198

RESUMO

OBJECTIVE: Although industrial sectors involving semiconductors; memory and storage technologies; display, optical, and photonic technologies; energy; biotechnology; and health care produce the most products that contain nanomaterials, nanotechnology is also used as an environmental technology to protect the environment through pollution prevention, treatment, and cleanup. In this review, we focus on environmental cleanup and provide a background and overview of current practice; research findings; societal issues; potential environment, health, and safety implications; and future directions for nanoremediation. We do not present an exhaustive review of chemistry/engineering methods of the technology but rather an introduction and summary of the applications of nanotechnology in remediation. We also discuss nanoscale zerovalent iron in detail. DATA SOURCES: We searched the Web of Science for research studies and accessed recent publicly available reports from the U.S. Environmental Protection Agency and other agencies and organizations that addressed the applications and implications associated with nanoremediation techniques. We also conducted personal interviews with practitioners about specific site remediations. DATA SYNTHESIS: We aggregated information from 45 sites, a representative portion of the total projects under way, to show nanomaterials used, types of pollutants addressed, and organizations responsible for each site. CONCLUSIONS: Nanoremediation has the potential not only to reduce the overall costs of cleaning up large-scale contaminated sites but also to reduce cleanup time, eliminate the need for treatment and disposal of contaminated soil, and reduce some contaminant concentrations to near zero-all in situ. Proper evaluation of nanoremediation, particularly full-scale ecosystem-wide studies, needs to be conducted to prevent any potential adverse environmental impacts.


Assuntos
Recuperação e Remediação Ambiental/métodos , Resíduos Perigosos , Nanopartículas/efeitos adversos , Nanotecnologia/métodos , Ecossistema , Humanos , Ferro/efeitos adversos
6.
Part Fibre Toxicol ; 2: 8, 2005 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16209704

RESUMO

The rapid proliferation of many different engineered nanomaterials (defined as materials designed and produced to have structural features with at least one dimension of 100 nanometers or less) presents a dilemma to regulators regarding hazard identification. The International Life Sciences Institute Research Foundation/Risk Science Institute convened an expert working group to develop a screening strategy for the hazard identification of engineered nanomaterials. The working group report presents the elements of a screening strategy rather than a detailed testing protocol. Based on an evaluation of the limited data currently available, the report presents a broad data gathering strategy applicable to this early stage in the development of a risk assessment process for nanomaterials. Oral, dermal, inhalation, and injection routes of exposure are included recognizing that, depending on use patterns, exposure to nanomaterials may occur by any of these routes. The three key elements of the toxicity screening strategy are: Physicochemical Characteristics, In Vitro Assays (cellular and non-cellular), and In Vivo Assays. There is a strong likelihood that biological activity of nanoparticles will depend on physicochemical parameters not routinely considered in toxicity screening studies. Physicochemical properties that may be important in understanding the toxic effects of test materials include particle size and size distribution, agglomeration state, shape, crystal structure, chemical composition, surface area, surface chemistry, surface charge, and porosity. In vitro techniques allow specific biological and mechanistic pathways to be isolated and tested under controlled conditions, in ways that are not feasible in in vivo tests. Tests are suggested for portal-of-entry toxicity for lungs, skin, and the mucosal membranes, and target organ toxicity for endothelium, blood, spleen, liver, nervous system, heart, and kidney. Non-cellular assessment of nanoparticle durability, protein interactions, complement activation, and pro-oxidant activity is also considered. Tier 1 in vivo assays are proposed for pulmonary, oral, skin and injection exposures, and Tier 2 evaluations for pulmonary exposures are also proposed. Tier 1 evaluations include markers of inflammation, oxidant stress, and cell proliferation in portal-of-entry and selected remote organs and tissues. Tier 2 evaluations for pulmonary exposures could include deposition, translocation, and toxicokinetics and biopersistence studies; effects of multiple exposures; potential effects on the reproductive system, placenta, and fetus; alternative animal models; and mechanistic studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...