Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 61(5): 1193-1207, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36692799

RESUMO

Tongue and its movements can be used for several medical-related tasks, such as identifying a disease and tracking a rehabilitation. To be able to focus on a tongue region, the tongue segmentation is needed to compute a region of interest for a further analysis. This paper proposes an encoder-decoder CNN-based architecture for segmenting a tongue in an image. The encoder module is mainly used for the tongue feature extraction, while the decoder module is used to reconstruct a segmented tongue from the extracted features based on training images. In addition, the residual multi-kernel pooling (RMP) is also applied into the proposed network to help in encoding multiple scales of the features. The proposed method is evaluated on two publicly available datasets under a scenario of front view and one tongue posture. It is then tested on a newly collected dataset of five tongue postures. The reported performances show that the proposed method outperforms existing methods in the literature. In addition, the re-training process could improve applying the trained model on unseen dataset, which would be a necessary step of applying the trained model on the real-world scenario.


Assuntos
Processamento de Imagem Assistida por Computador , Língua , Processamento de Imagem Assistida por Computador/métodos , Humanos , Língua/diagnóstico por imagem
2.
PeerJ Comput Sci ; 8: e934, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494819

RESUMO

MRI reconstruction is one of the critical processes of MRI machines, along with the acquisition. Due to a slow processing time of signal acquiring, parallel imaging and reconstruction techniques are applied for acceleration. To accelerate the acquisition process, fewer raw data are sampled simultaneously with all RF coils acquisition. Then, the reconstruction uses under-sampled data from all RF coils to restore the final MR image that resembles the fully sampled MR image. These processes have been a traditional procedure inside the MRI system since the invention of the multi-coils MRI machine. This paper proposes the deep learning technique with a lightweight network. The deep neural network is capable of generating the high-quality reconstructed MR image with a high peak signal-to-noise ratio (PSNR). This also opens a high acceleration factor for MR data acquisition. The lightweight network is called Multi-Level Pooling Encoder-Decoder Net (MLPED Net). The proposed network outperforms the traditional encoder-decoder networks on 4-fold acceleration with a significant margin on every evaluation metric. The network can be trained end-to-end, and it is a lightweight structure that can reduce training time significantly. Experimental results are based on a publicly available MRI Knee dataset from the fastMRI competition.

3.
J Med Imaging (Bellingham) ; 8(Suppl 1): 014001, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33457446

RESUMO

Purpose: The outbreak of COVID-19 or coronavirus was first reported in 2019. It has widely and rapidly spread around the world. The detection of COVID-19 cases is one of the important factors to stop the epidemic, because the infected individuals must be quarantined. One reliable way to detect COVID-19 cases is using chest x-ray images, where signals of the infection are located in lung areas. We propose a solution to automatically classify COVID-19 cases in chest x-ray images. Approach: The ResNet-101 architecture is adopted as the main network with more than 44 millions parameters. The whole net is trained using the large size of 1500 × 1500 x-ray images. The heatmap under the region of interest of segmented lung is constructed to visualize and emphasize signals of COVID-19 in each input x-ray image. Lungs are segmented using the pretrained U-Net. The confidence score of being COVID-19 is also calculated for each classification result. Results: The proposed solution is evaluated based on COVID-19 and normal cases. It is also tested on unseen classes to validate a regularization of the constructed model. They include other normal cases where chest x-ray images are normal without any disease but with some small remarks, and other abnormal cases where chest x-ray images are abnormal with some other diseases containing remarks similar to COVID-19. The proposed method can achieve the sensitivity, specificity, and accuracy of 97%, 98%, and 98%, respectively. Conclusions: It can be concluded that the proposed solution can detect COVID-19 in a chest x-ray image. The heatmap and confidence score of the detection are also demonstrated, such that users or human experts can use them for a final diagnosis in practical usages.

4.
BMC Vet Res ; 16(1): 300, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32838786

RESUMO

BACKGROUND: Nipah virus (NiV) is a fatal zoonotic agent that was first identified amongst pig farmers in Malaysia in 1998, in an outbreak that resulted in 105 fatal human cases. That epidemic arose from a chain of infection, initiating from bats to pigs, and which then spilled over from pigs to humans. In Thailand, bat-pig-human communities can be observed across the country, particularly in the central plain. The present study therefore aimed to identify high-risk areas for potential NiV outbreaks and to model how the virus is likely to spread. Multi-criteria decision analysis (MCDA) and weighted linear combination (WLC) were employed to produce the NiV risk map. The map was then overlaid with the nationwide pig movement network to identify the index subdistricts in which NiV may emerge. Subsequently, susceptible-exposed-infectious-removed (SEIR) modeling was used to simulate NiV spread within each subdistrict, and network modeling was used to illustrate how the virus disperses across subdistricts. RESULTS: Based on the MCDA and pig movement data, 14 index subdistricts with a high-risk of NiV emergence were identified. We found in our infectious network modeling that the infected subdistricts clustered in, or close to the central plain, within a range of 171 km from the source subdistricts. However, the virus may travel as far as 528.5 km (R0 = 5). CONCLUSIONS: In conclusion, the risk of NiV dissemination through pig movement networks in Thailand is low but not negligible. The risk areas identified in our study can help the veterinary authority to allocate financial and human resources to where preventive strategies, such as pig farm regionalization, are required and to contain outbreaks in a timely fashion once they occur.


Assuntos
Infecções por Henipavirus/veterinária , Vírus Nipah , Doenças dos Suínos/epidemiologia , Animais , Quirópteros/virologia , Técnicas de Apoio para a Decisão , Surtos de Doenças/prevenção & controle , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/transmissão , Humanos , Suínos , Doenças dos Suínos/virologia , Tailândia/epidemiologia , Meios de Transporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...