Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Funct Mater ; 31(44)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34744552

RESUMO

Grapevine leafroll disease (GLD) is a globally spreading viral infection that causes major economic losses by reducing crop yield, plant longevity and berry quality, with no effective treatment. Grapevine leafroll associated virus-3 (GLRaV-3) is the most severe and prevalent GLD strain. Here, we evaluated the ability of RNA interference (RNAi), a non-GMO gene-silencing pathway, to treat GLRaV-3 in infected Cabernet Sauvignon grapevines. We synthesized lipid-modified polyethylenimine (lmPEI) as a carrier for long double-stranded RNA (dsRNA, 250-bp-long) that targets RNA polymerase and coat protein genes that are conserved in the GLRaV-3 genome. Self-assembled dsRNA-lmPEI particles, 220 nm in diameter, displayed inner ordered domains spaced 7.3±2 nm from one another, correlating to lmPEI wrapping spirally around the dsRNA. The particles effectively protected RNA from degradation by ribonucleases, and Europium-loaded particles applied to grapevine leaves were detected as far as 60-cm from the foliar application point. In three field experiments, a single dose of foliar administration knocked down GLRaV-3 titer, and multiple doses of the treatment kept the viral titer at baseline and triggered recovery of the vine and berries. This study demonstrates RNAi as a promising platform for treating viral diseases in agriculture.

2.
Sci Rep ; 8(1): 7589, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773873

RESUMO

As the world population grows, there is a need for efficient agricultural technologies to provide global food requirements and reduce environmental toll. In medicine, nanoscale drug delivery systems grant improved therapeutic precision by overcoming biological barriers and enhancing drug targeting to diseased tissues. Here, we loaded nanoscale drug-delivery systems with agricultural nutrients, and applied them to the leaves of tomato plants. We show that the nanoparticles - liposomes composed of plant-derived lipids, penetrate the leaf and translocate in a bidirectional manner, distributing to other leaves and to the roots. The liposomes were then internalized by the plant cells, where they released their active ingredient. Up to 33% of the applied nanoparticles penetrated the leaf, compared to less than one percent of free-molecules applied in a similar manner. In our study, tomato plants treated with liposomes loaded with Fe and Mg overcame acute nutrient deficiency which was not treatable using ordinary agricultural nutrients. Furthermore, to address regulatory concerns regarding airborne nanoparticles, we rationally designed liposomes that were stable only over short spraying distances (less than 2 meters), while the liposomes disintegrated into safe molecular building blocks (phospholipids) over longer airborne distances. These findings support expanding the implementation of nanotechnology for delivering micronutrients to agricultural crops for increasing yield.


Assuntos
Produtos Agrícolas/metabolismo , Sistemas de Liberação de Medicamentos , Lipossomos/química , Nanopartículas/administração & dosagem , Nutrientes/administração & dosagem , Folhas de Planta/metabolismo , Solanum lycopersicum/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Nanopartículas/química , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...