Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(12): 7453-7463, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35424695

RESUMO

Extraordinary self-healing efficiency is rarely observed in mechanically strong hydrogels, which often limits the applications of hydrogels in biomedical engineering. We have presented an approach to utilize a special type of graphene oxide-based crosslinker (GOBC) for the simultaneous improvement of toughness and self-healing properties of conventional hydrogels. The GOBC has been prepared from graphene oxide (GO) by surface oxidation and further introduction of vinyl groups. It has been designed in such a way that the crosslinker is able to form both covalent bonds and noncovalent interactions with the polymer chains of hydrogels. To demonstrate the efficacy of GOBC, it was incorporated in a conventional polyacrylamide (PAM) and polyacrylic acid (PAA) hydrogel matrix, and the mechanical and self-healing properties of the prepared hydrogels were investigated. In PAM-GOBC hydrogels, it has been observed that the mechanical properties such as tensile strength, Young's modulus, and toughness are significantly improved by the incorporation of GOBC without compromising the self-healing efficiency. The PAM-GOBC hydrogel with a modulus of about 0.446 MPa exhibited about 70% stress healing efficiency after 40 h. Whereas, under the same conditions a PAM hydrogel with commonly used crosslinker N,N'-methylene-bis(acrylamide) of approximately the same modulus demonstrated no self-healing at all. Similar improvement of self-healing properties and toughness in PAA-GOBC hydrogel has also been observed which demonstrated the universality of the crosslinker. This crosslinker-based approach to improve the self-healing properties is expected to offer the possibility of the application of commonly used hydrogels in many different sectors, particularly in developing artificial tissues.

2.
Soft Matter ; 11(48): 9355-66, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26435107

RESUMO

Recently, charge balanced polyampholytes (PA) have been found to form tough and self-healing hydrogels. This class of physical hydrogels have a very high equilibrated polymer concentration in water (ca. 40-50 wt%), and are strongly viscoelastic. They are synthesized by random copolymerization of equal amounts of oppositely charged monomers at a high concentration, followed by a dialysis process of the small counter-ions and co-ions in water. The randomly distributed, opposite charges of the polymer form multiple ionic bonds of intra- and inter-chains with strength distribution. The strong inter-chain bonds, stabilized by topological entanglement, serve as quasi-permanent crosslinks, imparting the elasticity, while the weak bonds, both inter- and intra-chains, reversibly break and re-form to dissipate energy to toughen the materials. In this work, we intend to clarify the structure of the physical PA hydrogels from the tensile behaviors of the PA hydrogels. To clarify the structure and its formation mechanism, we analysed the tensile behaviors of the samples before and after the dialysis. We separated the quasi-permanent crosslinking of strong inter-chain bonds and the dynamic crosslinking of weak inter-chain bonds by using a combined model that consists of the Upper Convected Maxwell model and the Gent strain hardening model. The model fitting of the tensile behaviors extracts quantitative structural parameters, including the densities of weak and strong inter-chain bonds and the theoretical finite extensibility of polymer chains. Based on the fitting results of the combined model, the structural parameters of partial chains at a fixed observation time, including the Kuhn number, Kuhn length, and chain conformation, are determined using the scaling theory. The effects of monomer concentration at preparation, the effect of dialysis and the initial strain rate on the dynamic structure of PA gels, are discussed based on these analyses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...