Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(16): e2209113, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36641649

RESUMO

The discovery of van der Waals (vdW) magnets opened a new paradigm for condensed matter physics and spintronic technologies. However, the operations of active spintronic devices with vdW ferromagnets are limited to cryogenic temperatures, inhibiting their broader practical applications. Here, the robust room-temperature operation of lateral spin-valve devices using the vdW itinerant ferromagnet Fe5 GeTe2 in heterostructures with graphene is demonstrated. The room-temperature spintronic properties of Fe5 GeTe2 are measured at the interface with graphene with a negative spin polarization. Lateral spin-valve and spin-precession measurements provide unique insights by probing the Fe5 GeTe2 /graphene interface spintronic properties via spin-dynamics measurements, revealing multidirectional spin polarization. Density functional theory calculations in conjunction with Monte Carlo simulations reveal significantly canted Fe magnetic moments in Fe5 GeTe2 along with the presence of negative spin polarization at the Fe5 GeTe2 /graphene interface. These findings open opportunities for vdW interface design and applications of vdW-magnet-based spintronic devices at ambient temperatures.

2.
ACS Nano ; 14(11): 15864-15873, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33136363

RESUMO

The utilization of large-area graphene grown by chemical vapor deposition (CVD) is crucial for the development of scalable spin interconnects in all-spin-based memory and logic circuits. However, the fundamental influence of the presence of multilayer graphene patches and their boundaries on spin dynamics has not been addressed yet, which is necessary for basic understanding and application of robust spin interconnects. Here, we report universal spin transport and dynamic properties in specially devised single layer, bilayer, and trilayer graphene channels and their layer boundaries and folds that are usually present in CVD graphene samples. We observe uniform spin lifetime with isotropic spin relaxation for spins with different orientations in graphene layers and their boundaries at room temperature. In all of the inhomogeneous graphene channels, the spin lifetime anisotropy ratios for spins polarized out-of-plane and in-plane are measured to be close to unity. Our analysis shows the importance of both Elliott-Yafet and D'yakonov-Perel' mechanisms with an increasing role of the latter mechanism in multilayer channels. These results of universal and isotropic spin transport on large-area inhomogeneous CVD graphene with multilayer patches and their boundaries and folds at room temperature prove its outstanding spin interconnect functionality, which is beneficial for the development of scalable spintronic circuits.

3.
Adv Mater ; 32(38): e2000818, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32776352

RESUMO

An outstanding feature of topological quantum materials is their novel spin topology in the electronic band structures with an expected large charge-to-spin conversion efficiency. Here, a charge-current-induced spin polarization in the type-II Weyl semimetal candidate WTe2 and efficient spin injection and detection in a graphene channel up to room temperature are reported. Contrary to the conventional spin Hall and Rashba-Edelstein effects, the measurements indicate an unconventional charge-to-spin conversion in WTe2 , which is primarily forbidden by the crystal symmetry of the system. Such a large spin polarization can be possible in WTe2 due to a reduced crystal symmetry combined with its large spin Berry curvature, spin-orbit interaction with a novel spin-texture of the Fermi states. A robust and practical method is demonstrated for electrical creation and detection of such a spin polarization using both charge-to-spin conversion and its inverse phenomenon and utilized it for efficient spin injection and detection in the graphene channel up to room temperature. These findings open opportunities for utilizing topological Weyl materials as nonmagnetic spin sources in all-electrical van der Waals spintronic circuits and for low-power and high-performance nonvolatile spintronic technologies.

4.
Nat Commun ; 11(1): 3657, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694506

RESUMO

Unique electronic spin textures in topological states of matter are promising for emerging spin-orbit driven memory and logic technologies. However, there are several challenges related to the enhancement of their performance, electrical gate-tunability, interference from trivial bulk states, and heterostructure interfaces. We address these challenges by integrating two-dimensional graphene with a three-dimensional topological insulator (TI) in van der Waals heterostructures to take advantage of their remarkable spintronic properties and engineer proximity-induced spin-charge conversion phenomena. In these heterostructures, we experimentally demonstrate a gate-tunable spin-galvanic effect (SGE) at room temperature, allowing for efficient conversion of a non-equilibrium spin polarization into a transverse charge current. Systematic measurements of SGE in various device geometries via a spin switch, spin precession, and magnetization rotation experiments establish the robustness of spin-charge conversion in the Gr-TI heterostructures. Importantly, using a gate voltage, we reveal a strong electric field tunability of both amplitude and sign of the spin-galvanic signal. These findings provide an efficient route for realizing all-electrical and gate-tunable spin-orbit technology using TIs and graphene in heterostructures, which can enhance the performance and reduce power dissipation in spintronic circuits.

5.
ACS Nano ; 14(1): 1196-1206, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31904217

RESUMO

Hybrid light-matter states-polaritons-have attracted considerable scientific interest recently, motivated by their potential for development of nonlinear and quantum optical schemes. To realize such states, monolayer transition metal dichalcogenides (TMDCs) have been widely employed as excitonic materials. In addition to neutral excitons, TMDCs host charged excitons, which enables active tuning of hybrid light-matter states by electrical means. Although several reports demonstrated charged exciton-polaritons in various systems, the full-range interaction control attainable at room temperature has not been realized. Here, we demonstrate electrically tunable charged exciton-plasmon polaritons in a hybrid tungsten disulfide (WS2) monolayer-plasmonic nanoantenna system. We show that electrical gating of monolayer WS2 allows tuning the oscillator strengths of neutral and charged excitons not only at cryogenic but also at room temperature, both at vacuum and atmospheric pressure. Such electrical control enables a full-range tunable switching from strong neutral exciton-plasmon coupling to strong charged exciton-plasmon coupling. Our experimental findings allow discussing beneficial and limiting factors of charged exciton-plasmon polaritons, as well as offer routes toward realization of charged polaritonic devices at ambient conditions.

6.
Sci Adv ; 4(9): eaat9349, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30255150

RESUMO

Dirac materials such as graphene and topological insulators (TIs) are known to have unique electronic and spintronic properties. We combine graphene with TIs in van der Waals heterostructures to demonstrate the emergence of a strong proximity-induced spin-orbit coupling in graphene. By performing spin transport and precession measurements supported by ab initio simulations, we discover a strong tunability and suppression of the spin signal and spin lifetime due to the hybridization of graphene and TI electronic bands. The enhanced spin-orbit coupling strength is estimated to be nearly an order of magnitude higher than in pristine graphene. These findings in graphene-TI heterostructures could open interesting opportunities for exploring exotic physical phenomena and new device functionalities governed by topological proximity effects.

7.
Sci Rep ; 7(1): 15231, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123124

RESUMO

The two-dimensional (2D) material graphene is highly promising for Hall sensors due to its potential of having high charge carrier mobility and low carrier concentration at room temperature. Here, we report the scalable batch-fabrication of magnetic Hall sensors on graphene encapsulated in hexagonal boron nitride (h-BN) using commercially available large area CVD grown materials. The all-CVD grown h-BN/graphene/h-BN van der Waals heterostructures were prepared by layer transfer technique and Hall sensors were batch-fabricated with 1D edge metal contacts. The current-related Hall sensitivities up to 97 V/AT are measured at room temperature. The Hall sensors showed robust performance over the wafer scale with stable characteristics over six months in ambient environment. This work opens avenues for further development of growth and fabrication technologies of all-CVD 2D material heterostructures and allows further improvements in Hall sensor performance for practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...