Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AMB Express ; 7(1): 218, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29236192

RESUMO

S. pneumoniae is a facultative human pathogen causing a wide range of infections including the life-threatening pneumoniae or meningitis. It colonizes nasopharynx as well as its closest phylogenetic relatives S. pseudopneumoniae and S. mitis. Both the latter, despite the considerable morphological and phenotypic similarity with the pneumococcus, are considerably less pathogenic for humans and cause infections mainly in the immunocompromized hosts. In this work, we compared the inhibitory effect of S. pneumoniae and its relatives on the growth of Moraxella catarrhalis strains using the culture-based antagonistic test. We observed that the inhibitory effect of S. mitis strains is kept when a hydrogen peroxide produced by cells is inactivated by catalase, and even when the live cells are killed in chloroform vapors, in contrast to the pneumococcus whose inhibiting ability disappeared when the cells die. It was suggested that this effect may be due to the production of bacterial antimicrobial peptides by S. mitis, so we examined the genomes of our strains for the presence of bacteriocin-like peptides encoding genes. We observed that a set of bacteriocin-like genes in the genome of S. mitis is greatly poorer in comparison with S. pneumoniae one; moreover, in one S. mitis strain we found no bacteriocin-like genes. It could mean that there are probably some additional opportunities of S. mitis to inhibit the growth of competing neighbors which are still have to be discovered.

2.
Genetika ; 50(10): 1145-53, 2014 Oct.
Artigo em Russo | MEDLINE | ID: mdl-25720247

RESUMO

A new aliphatic amidase gene (ami), having a level of similarity with the nearest homologs of no more than 77%, was identified in the Rhodococcus erythropolis TA37 strain, which is able to hydrolyze a wide range of amides. The amidase gene was cloned within a 3.7 kb chromosomal locus, which also contains putative acetyl-CoA ligase and ABC-type transportergenes. The structure of this locus in the R. erythropolis TA37 strain differs from the structure of loci in other Rhodococcus strains. The amidase gene is expressed in Escherichia coli cells. It was demonstrated that amidase (generated in the recombinant strain) efficiently hydrolyzes acetamide (aliphatic anmide) and does not use 4'-nitroacetanilide (N-substituted amide) as a substrate. Insertional inactivation of the amidase gene in the R. erythropolis TA37 strain results in a considerable decrease (by at least 6-7 times) in basal amidase activity, indicating functional amidase activity in the R. erythropolis TA37 strain.


Assuntos
Amidoidrolases/genética , Proteínas de Bactérias/genética , Rhodococcus/genética , Transportadores de Cassetes de Ligação de ATP/genética , Acetamidas/metabolismo , Acetanilidas/metabolismo , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Bases , Clonagem Molecular , Coenzima A Ligases/genética , Genes Bacterianos , Dados de Sequência Molecular , Rhodococcus/enzimologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...