Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38988292

RESUMO

The synthetic accessibility and tolerance to structural modification of phototriggered compounds (PTs) based on the ortho- nitrobenzene (ONB) protecting group have encouraged a myriad of applications including optimization of biological activity, and supramolecular polymerization. Here, a combination of ultrafast transient absorption spectroscopy techniques is used to study the multistep photochemistry of two nitroaromatic phototriggers based on the ONB chromophore, O-(4,5-dimethoxy-2-nitrobenzyl)-l-serine (DMNB-Ser) and O-[(2-nitrophenyl)methyl]-l-tyrosine hydrochloride (NB-Tyr), in DMSO solutions on femtosecond to microsecond time scales following the absorption of UV light. From a common nitro-S1 excited state, the PTs can either undergo excited state intramolecular hydrogen transfer (ESIHT) to an aci-S1 isomer within the singlet state manifold, leading to direct S1 → S0 internal conversion through a conical intersection, or competitive intersystem crossing (ISC) to access the triplet state manifold on time scales of (1.93 ± 0.03) ps and (13.9 ± 1.2) ps for DMNB-Ser and NB-Tyr, respectively. Deprotonation of aci-T1 species to yield triplet anions is proposed to occur in both PTs, with an illustrative time constant of (9.4 ± 0.7) ns for DMNB-Ser. More than 75% of the photoexcited molecules return to their electronic ground states within 8 µs, either by direct S1 → S0 relaxation or anion reprotonation. Hence, upper limits to the quantum yields of photoproduct formation are estimated to be in the range of 13-25%. Mixed DMSO/H2O solvents show the influence of the environment on the observed photochemistry, for example, revealing two nitro-S1 lifetimes for DMNB-Ser in a 10:1 DMSO/H2O mixture of 1.95 ps and (10.1 ± 1.2) ps, which are attributed to different microsolvation environments.

2.
J Am Chem Soc ; 146(15): 10407-10417, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572973

RESUMO

Nitroaromatic compounds are major constituents of the brown carbon aerosol particles in the troposphere that absorb near-ultraviolet (UV) and visible solar radiation and have a profound effect on the Earth's climate. The primary sources of brown carbon include biomass burning, forest fires, and residential burning of biofuels, and an important secondary source is photochemistry in aqueous cloud and fog droplets. Nitrobenzene is the smallest nitroaromatic molecule and a model for the photochemical behavior of larger nitroaromatic compounds. Despite the obvious importance of its droplet photochemistry to the atmospheric environment, there have not been any detailed studies of the ultrafast photochemical dynamics of nitrobenzene in aqueous solution. Here, we combine femtosecond transient absorption spectroscopy, time-resolved infrared spectroscopy, and quantum chemistry calculations to investigate the primary steps following the near-UV (λ ≥ 340 nm) photoexcitation of aqueous nitrobenzene. To understand the role of the surrounding water molecules in the photochemical dynamics of nitrobenzene, we compare the results of these investigations with analogous measurements in solutions of methanol, acetonitrile, and cyclohexane. We find that vibrational energy transfer to the aqueous environment quenches internal excitation, and therefore, unlike the gas phase, we do not observe any evidence for formation of photoproducts on timescales up to 500 ns. We also find that hydrogen bonding between nitrobenzene and surrounding water molecules slows the S1/S0 internal conversion process.

3.
Sci Rep ; 13(1): 18874, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914852

RESUMO

We report on an ultrafast infrared optical parametric chirped-pulse amplifier (OPCPA), pumped by a 200-W thin-disk Yb-based regenerative amplifier at a repetition rate of 100 kHz. The OPCPA is tunable in the spectral range 1.4-3.9 [Formula: see text]m, generating up to 23 W of < 100-fs signal and 13 W of < 200-fs idler pulses for infrared spectroscopy, with additional spectral filtering capabilities for Raman spectroscopy. The OPCPA can also yield 19 W of 49-fs 1.75-[Formula: see text]m signal or 5 W of 62-fs 2.8-[Formula: see text]m idler pulses with active carrier-to-envelope-phase (CEP) stabilisation for high-harmonic generation (HHG). We illustrate the versatility of the laser design, catering to various experimental requirements for probing ultrafast science.

4.
Faraday Discuss ; 244(0): 391-410, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37415486

RESUMO

The study aims to understand the role of the transient bonding in the interplay between the structural and electronic changes in heteroleptic Cu(I) diimine diphosphine complexes. This is an emerging class of photosensitisers which absorb in the red region of the spectrum, whilst retaining a sufficiently long excited state lifetime. Here, the dynamics of these complexes are explored by transient absorption (TA) and time-resolved infrared (TRIR) spectroscopy, which reveal ultrafast intersystem crossing and structural distortion occurring. Two potential mechanisms affecting excited state decay in these complexes involve a transient formation of a solvent adduct, made possible by the opening up of the Cu coordination centre in the excited state due to structural distortion, and by a transient coordination of the O-atom of the phosphine ligand to the copper center. X-ray absorption studies of the ground electronic state have been conducted as a prerequisite for the upcoming X-ray spectroscopy studies which will directly determine structural dynamics. The potential for these complexes to be used in bimolecular applications is confirmed by a significant yield of singlet oxygen production.

5.
Nano Lett ; 21(5): 1968-1975, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33600187

RESUMO

The transition-metal dichalcogenide VSe2 exhibits an increased charge density wave transition temperature and an emerging insulating phase when thinned to a single layer. Here, we investigate the interplay of electronic and lattice degrees of freedom that underpin these phases in single-layer VSe2 using ultrafast pump-probe photoemission spectroscopy. In the insulating state, we observe a light-induced closure of the energy gap, which we disentangle from the ensuing hot carrier dynamics by fitting a model spectral function to the time-dependent photoemission intensity. This procedure leads to an estimated time scale of 480 fs for the closure of the gap, which suggests that the phase transition in single-layer VSe2 is driven by electron-lattice interactions rather than by Mott-like electronic effects. The ultrafast optical switching of these interactions in SL VSe2 demonstrates the potential for controlling phase transitions in 2D materials with light.

6.
Phys Chem Chem Phys ; 22(44): 25695-25703, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33146165

RESUMO

Femtosecond pump-probe photoelectron spectroscopy measurements using an extreme ultraviolet probe have been made on the photodissociation dynamics of UV (269 nm) excited CH3I. The UV excitation leads to population of the 3Q0 state which rapidly dissociates. The dissociation is manifested as shifts in the measured photoelectron kinetic energy that map the extending C-I bond. The increased energy available in the XUV probe relative to a UV probe means the dynamics are followed over the chemically important region as far as C-I bond lengths of approximately 4 Å.

7.
Commun Chem ; 3(1): 72, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36703470

RESUMO

Ultrafast laser pump-probe methods allow chemical reactions to be followed in real time, and have provided unprecedented insight into fundamental aspects of chemical reactivity. While evolution of the electronic structure of the system under study is evident from changes in the observed spectral signatures, information on rearrangement of the nuclear framework is generally obtained indirectly. Disentangling contributions to the signal arising from competing photochemical pathways can also be challenging. Here we introduce the new technique of three-dimensional covariance-map Coulomb explosion imaging, which has the potential to provide complete three-dimensional information on molecular structure and dynamics as they evolve in real time during a gas-phase chemical reaction. We present first proof-of-concept data from recent measurements on CF3I. Our approach allows the contributions from competing fragmentation pathways to be isolated and characterised unambiguously, and is a promising route to enabling the recording of 'molecular movies' for a wide variety of gas-phase chemical processes.

8.
Phys Chem Chem Phys ; 21(21): 11142-11149, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31094379

RESUMO

The dissociation dynamics of CH3I is investigated on the red (269 nm) and blue (255 nm) side of the absorption maximum of the A-band. Using a multiphoton ionisation probe in a time-resolved photoelectron imaging experiment we observe very different dynamics at the two wavelengths, with significant differences in the measured lifetime and dynamic structure. The differences are explained in terms of changes in excitation cross-sections of the accessible 3Q0 and 1Q1 states and the subsequent dynamics upon each of them. The measurements support the existing literature on the rapid dissociation dynamics on the red side of the absorption maximum at 269 nm which is dominated by the dynamics along the 3Q0 state. At 255 nm we observe similar dynamics along the 3Q0 state but also a significant contribution from the 1Q1 state. The dynamics along the 1Q1 potential show a more complex structure in the photoelectron spectrum and a significantly increased lifetime, indicative of a more complex reaction pathway.

9.
J Chem Phys ; 150(12): 124109, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30927888

RESUMO

We present a model for the lowest two potential energy surfaces (PESs) that describe the photoinduced ring-opening reaction of benzopyran taken as a model compound to study the photochromic ring-opening reaction of indolinobenzospiropyran and its evolution toward its open-chain analog. The PESs are expressed in terms of three effective rectilinear coordinates. One corresponds to the direction between the equilibrium geometry in the electronic ground state, referred to as the Franck-Condon geometry, and the minimum of conical intersection (CI), while the other two span the two-dimensional branching space at the CI. The model correctly reproduces the topography of the PESs. The ab initio calculations are performed with the extended multiconfiguration quasidegenerate perturbation theory at second order method. We demonstrate that accounting for electron dynamic correlation drastically changes the global energy landscape since some zwitterionic states become strongly stabilized. Quantum dynamics calculations using this PES model produce an absorption spectrum that matches the experimental one to a good accuracy.

10.
J Phys Chem Lett ; 10(9): 2300-2305, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30999749

RESUMO

Understanding optical properties of molecular dyes is required to drive progress in molecular photonics. This requires a fundamental comprehension of the role of electronic structure, geometry, and interactions with the environment in order to guide molecular engineering strategies. In this context, we studied charged cyanine dye molecules in the gas phase with a controlled microenvironment to unravel the origin of the spectral tuning of this class of molecules. This was performed using a new approach combining femtosecond multiple-photon action spectroscopy of on-the-fly mass-selected molecular ions and high-level quantum calculations. While arguments based on molecular geometry are often used to design new polymethine dyes, we provide experimental evidence that electronic structure is of primary importance and hence the decisive criterion as suggested by recent theoretical investigations.

11.
J Am Soc Mass Spectrom ; 25(5): 832-40, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24658806

RESUMO

A systematic mass spectrometric study of two of the most common analgesic drugs, paracetamol and ibuprofen, is reported. The drugs were studied by means of secondary ion mass spectrometry (SIMS) and secondary neutral mass spectrometry (SNMS) using laser post-ionization (LPI) both in pure samples and in a two-component mixture. Ion suppression within the two-component system observed in SIMS mode is ameliorated using LPI under room temperature analysis. However, suppression effects are apparent in LPI mode on performing the analysis at cryogenic temperatures, which we attribute to changes in the desorption characteristics of sputtered molecules, which influences the subsequent post-ionization efficiency. This suggests different mechanisms of ion suppression in SIMS and LPI modes.


Assuntos
Acetaminofen/análise , Analgésicos não Narcóticos/análise , Ibuprofeno/análise , Modelos Químicos , Acetaminofen/química , Analgésicos não Narcóticos/química , Temperatura Baixa , Combinação de Medicamentos , Técnicas Eletroquímicas/instrumentação , Ibuprofeno/química , Espectrometria de Massa de Íon Secundário/instrumentação , Espectrometria de Massa de Íon Secundário/métodos , Propriedades de Superfície , Vácuo
12.
Phys Chem Chem Phys ; 14(35): 12147-56, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22859215

RESUMO

The multi-electron dissociative ionization (MEDI) of alkyl-halide clusters induced by 35 ps (at 266, 532 and 1064 nm) and 20 fs (at 400 and 800 nm) laser pulses is reported. In most cases, the MEDI of clusters is observed at substantially lower laser intensities than those reported for the monomer molecules, while the fragment ions are released with higher kinetic energies. From the comparative analysis of the experimental data, is concluded that the increase of molecular chain and/or the presence of a lighter halogen (I, Br, Cl) in the molecular skeleton results in the increase of the laser intensity thresholds for the appearance of the singly and multiply charged fragment ions. As far as the angular distributions of the ejected ions are concerned, they are found to be dependent on the laser pulse duration. For the observed experimental data, a physical mechanism is proposed, based on the combined action of the laser and the electric field created within the clusters after their single ionization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...